1
|
Green method to determine triazine pesticides in water using Rotating Disk Sorptive Extraction (RDSE). Heliyon 2021; 7:e07878. [PMID: 34522798 PMCID: PMC8426532 DOI: 10.1016/j.heliyon.2021.e07878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/23/2020] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The following work presents the development of the solid phase extraction technique with rotary disk (RDSE) in which the analysis for seven triazines in surface waters was first implemented. All the variables involved in extraction have been studied and optimized using a solid phase of octadecyl (C18) deposited on surface of the disk. Triazines were analyzed quantitatively by gas chromatography with simple quadruple mass detector, recoveries obtained for seven triazines were between 80% and 120%, accuracy expressed as RSD was between 3.21% and 6.34%, and detection limit of the method was between 0.020-0.056 μgL-1 according to each analyte, which indicates a good reproducibility and precision of the method. Finally, the method was applied to analyze the objective compounds in water samples obtained in the Bolo River (Palmira-Colombia), in which triazines were not detected.
Collapse
|
2
|
|
3
|
Shishov A, Volodina N, Gagarionova S, Shilovskikh V, Bulatov A. A rotating disk sorptive extraction based on hydrophilic deep eutectic solvent formation. Anal Chim Acta 2021; 1141:163-172. [PMID: 33248649 DOI: 10.1016/j.aca.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
An elegant preconcentration method assumed sorption of polar analytes from complex non-polar matrices on a rotating disk based on hydrophilic deep eutectic solvent formation is presented for the first time. The surface of poly(vinylidene fluoride-co-tetrafluoroethylene) rotating disk was coated with choline chloride acted as a precursor of deep eutectic solvent (hydrogen bond acceptor). The rotating disk was immersed in vegetable oil sample and phenolic compounds (hydrogen bond donors) were efficient separated on the disk during its rotation due to deep eutectic solvent formation. Ability of hydrophilic deep eutectic solvent decomposition in aqueous phase was used for fast analytes elution from the disk surface (2 min). Finally, the obtained aqueous solution of phenolic compounds and choline chloride was analyzed by high-performance liquid chromatography with fluorescence detection. Under optimal conditions, the limits of detection for gallic acid, protocatechuic acid, tyrosol, vanillic acid, p-coumarinic acid, syringaldehyde and thymol were in the range of 10-60 μg L-1. The developed approach allowed to significantly reduce sorption and elution time in comparison with previously reported rotating disk sorptive extraction approaches. The extraction mechanism based on deep eutectic solvent formation provided selective separation of target analytes with absolute extraction recovery in the range of 66-87%.
Collapse
Affiliation(s)
- Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Natalia Volodina
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Svetlana Gagarionova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Vladimir Shilovskikh
- Infochemistry Scientific Center of ITMO University, 9, Lomonosova str., St. Petersburg, 191002, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, Saint Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Fashi A, Cheraghi M, Ebadipur H, Ebadipur H, Zamani A, Badiee H, Pedersen-Bjergaard S. Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples. Talanta 2020; 217:121001. [DOI: 10.1016/j.talanta.2020.121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
5
|
Omena E, Oenning AL, Merib J, Richter P, Rosero-Moreano M, Carasek E. A green and simple sample preparation method to determine pesticides in rice using a combination of SPME and rotating disk sorption devices. Anal Chim Acta 2019; 1069:57-65. [DOI: 10.1016/j.aca.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
6
|
Manzo V, Goya-Pacheco J, Arismendi D, Becerra-Herrera M, Castillo-Aguirre A, Castillo-Felices R, Rosero-Moreano M, Carasek E, Richter P. Cork sheet as a sorptive phase to extract hormones from water by rotating-disk sorptive extraction (RDSE). Anal Chim Acta 2019; 1087:1-10. [PMID: 31585556 DOI: 10.1016/j.aca.2019.08.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
This work reports for the first time the use of laminar cork as a sorptive phase in a microextraction technique, rotating-disk sorptive extraction (RDSE). Typical hormones (estrone, estradiol, estriol and ethinyl estradiol) were selected as analyte models and extracted from wastewater samples on laminar cork with statistically equivalent extraction efficiency to that provided by Oasis HLB. The cork characterization was performed by confocal fluorescence microscopy (CLSM), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), allowing the identification of lignin, suberin and polysaccharides (cellulose and hemicellulose) as the main components of the cork. The best conditions for extraction were as follows: rotation velocity of the disk, 2000 rpm; extraction time, 45 min; and sample volume, 20 mL. The analytical features of the developed method show that calibration curves for all analytes have R2 values higher than 0.99. The absolute recoveries were higher than 63%, and the precision, expressed as relative standard deviation, ranged from 2 to 16%. The LOD and LOQ ranges were 3-19 and 10-62 ng L-1, respectively. The proposed method was applied to the analysis of wastewater, and the concentrations of hormones in a wastewater treatment plant in Santiago, Chile, ranged from <LOQ to 48 ng L-1.
Collapse
Affiliation(s)
- Valentina Manzo
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Jairón Goya-Pacheco
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Mercedes Becerra-Herrera
- Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile
| | - Alver Castillo-Aguirre
- Department of Chemistry, Faculty of Sciences, National University of Colombia, Headquarters Bogotá, Road 30 N°. 45-03, Colombia
| | - Rosario Castillo-Felices
- Department of Instrumental Analysis, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, 4070043, Concepcion, Chile
| | - Milton Rosero-Moreano
- Research Group in Chromatography and Related Techniques (GICTA), Department of Chemistry, Faculty of Exact and Natural Sciences, University of Caldas, Calle 65 Nº. 26-10, Manizales, Colombia
| | - Eduardo Carasek
- Department of Chemistry, Federal University of Santa Catalina, Florianópolis, 88040900, SC, Brazil
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
7
|
A rotating cotton‐based disk packed with a cation-exchange resin: Separation of ofloxacin from biological fluids followed by chemiluminescence determination. Talanta 2019; 196:117-123. [DOI: 10.1016/j.talanta.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/24/2022]
|
8
|
Calderilla C, Maya F, Cerdà V, Leal LO. Direct photoimmobilization of extraction disks on "green state" 3D printed devices. Talanta 2019; 202:67-73. [PMID: 31171229 DOI: 10.1016/j.talanta.2019.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023]
Abstract
Post-curing is essential to improve the mechanical properties of 3D printed parts fabricated by stereolithography (SLA), since right after 3D printing they remain in a "green state". It means that the 3D printed parts have reached their final shape, but the polymerization reaction has not been yet completed. Herein, we take advantage of the tacky partially polymerized surface of "green state" SLA 3D printed parts to immobilize extraction disks and miniature magnets, which after UV post-curing, become permanently attached to the 3D printed part resulting in a rotating-disk sorptive extraction device (RDSE). The developed "stick & cure" procedure is reagent-free and does not require any additional preparation time, specialized skills, or instrumentation. As proof of concept, 3D printed RDSE devices with immobilized chelating disks have been applied to the simultaneous extraction of 14 trace metals prior to ICP-OES determination, featuring LODs between 0.03 and 1.27 μg L-1, and an excellent device-to-device reproducibility (n = 5, RSD = 2.7-8.3%). The developed method was validated using certified wastewater and soil reference samples, and satisfactory spiking recoveries were obtained in the analysis of highly polluted solid waste treatment plant leachates (89-110%). In addition, exploiting the versatility of 3D printing, nine RDSE devices with different shapes were fabricated. Their performance was evaluated and compared for the fast extraction of the highly toxic Cr (VI) as its 1,5-diphenylcarbazide complex in reversed-phase mode, showing different extraction performance on depending on the shape of the 3D printed RDSE device.
Collapse
Affiliation(s)
- Carlos Calderilla
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Environment and Energy Department, Advanced Materials Research Center, Miguel de Cervantes 120, 31136, Chihuahua, Mexico
| | - Fernando Maya
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| | - Víctor Cerdà
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Luz O Leal
- Environment and Energy Department, Advanced Materials Research Center, Miguel de Cervantes 120, 31136, Chihuahua, Mexico
| |
Collapse
|
9
|
Evaluation of the rotating disk sorptive extraction technique with polymeric sorbent for multiresidue determination of pesticides in water by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2017; 1516:54-63. [DOI: 10.1016/j.chroma.2017.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023]
|
10
|
|
11
|
Płotka-Wasylka J, Szczepańska N, Owczarek K, Namieśnik J. Miniaturized Solid Phase Extraction. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Fiscal-Ladino JA, Obando-Ceballos M, Rosero-Moreano M, Montaño DF, Cardona W, Giraldo LF, Richter P. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction. Anal Chim Acta 2016; 953:23-31. [PMID: 28010739 DOI: 10.1016/j.aca.2016.11.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023]
Abstract
Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L-1 and 43 ng L-1, the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples.
Collapse
Affiliation(s)
- Jhon A Fiscal-Ladino
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
| | - Mónica Obando-Ceballos
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
| | - Milton Rosero-Moreano
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales, Colombia
| | - Diego F Montaño
- Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín, Colombia
| | - Wilson Cardona
- Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín, Colombia
| | - Luis F Giraldo
- Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín, Colombia
| | - Pablo Richter
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile.
| |
Collapse
|
13
|
Karimi S, Talebpour Z, Adib N. Sorptive thin film microextraction followed by direct solid state spectrofluorimetry: A simple, rapid and sensitive method for determination of carvedilol in human plasma. Anal Chim Acta 2016; 924:45-52. [DOI: 10.1016/j.aca.2016.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022]
|
14
|
Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Anal Bioanal Chem 2016; 408:5329-35. [DOI: 10.1007/s00216-016-9628-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
15
|
Corrotea Y, Aguilera N, Honda L, Richter P. Determination of Hormones in Wastewater Using Rotating Disk Sorptive Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1098653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Miniaturized solid-phase extraction techniques. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.026] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
A molecularly imprinted polymer as the sorptive phase immobilized in a rotating disk extraction device for the determination of diclofenac and mefenamic acid in wastewater. Anal Chim Acta 2015; 889:130-7. [DOI: 10.1016/j.aca.2015.07.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022]
|
18
|
Programmable flow-based dynamic sorptive microextraction exploiting an octadecyl chemically modified rotating disk extraction system for the determination of acidic drugs in urine. J Chromatogr A 2014; 1368:64-9. [DOI: 10.1016/j.chroma.2014.09.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/05/2014] [Accepted: 09/27/2014] [Indexed: 11/18/2022]
|
19
|
Manzo V, Honda L, Navarro O, Ascar L, Richter P. Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction. Talanta 2014; 128:486-92. [DOI: 10.1016/j.talanta.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/27/2022]
|
20
|
Xu Z, Yang Z, Liu Z. Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples. J Chromatogr A 2014; 1358:52-9. [DOI: 10.1016/j.chroma.2014.06.093] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
21
|
Rotating-disk sorptive extraction: effect of the rotation mode of the extraction device on mass transfer efficiency. Anal Bioanal Chem 2014; 406:2987-92. [DOI: 10.1007/s00216-014-7693-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
22
|
A new rotating-disk sorptive extraction mode, with a copolymer of divinylbenzene and N-vinylpyrrolidone trapped in the cavity of the disk, used for determination of florfenicol residues in porcine plasma. Anal Bioanal Chem 2014; 406:2205-10. [DOI: 10.1007/s00216-014-7628-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/23/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
|
23
|
MUÑOZ C, TORAL MI, AHUMADA I, RICHTER P. Rotating Disk Sorptive Extraction of Cu-Bisdiethyldithiocarbamate Complex from Water and Its Application to Solid Phase Spectrophotometric Quantification. ANAL SCI 2014; 30:613-7. [DOI: 10.2116/analsci.30.613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Carlos MUÑOZ
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| | - M. Inés TORAL
- Departamento de Química, Facultad de Ciencias, Universidad de Chile
| | - Inés AHUMADA
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| | - Pablo RICHTER
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| |
Collapse
|
24
|
Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 2013; 1321:1-13. [DOI: 10.1016/j.chroma.2013.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
25
|
Roldán-Pijuán M, Lucena R, Alcudia-León M, Cárdenas S, Valcárcel M. Stir octadecyl-modified borosilicate disk for the liquid phase microextraction of triazine herbicides from environmental waters. J Chromatogr A 2013; 1307:58-65. [DOI: 10.1016/j.chroma.2013.07.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 01/23/2023]
|
26
|
Jachero L, Sepúlveda B, Ahumada I, Fuentes E, Richter P. Rotating disk sorptive extraction of triclosan and methyl-triclosan from water samples. Anal Bioanal Chem 2013; 405:7711-6. [DOI: 10.1007/s00216-012-6679-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/29/2022]
|