1
|
Xing J, Wang F, Cong H, Wang S, Shen Y, Yu B. Analysis of proteins and chiral drugs based on vancomycin covalent capillary electrophoretic coating. Analyst 2020; 146:1320-1325. [PMID: 33367313 DOI: 10.1039/d0an02018d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vancomycin is an amphoteric glycopeptide molecule, and its group diversity and chiral active sites provide a potential basis for its application in chromatographic analysis. In this article, using photosensitive diazo resin (DR) as the coupling agent, vancomycin is modified on the inner wall of the capillary to construct a capillary coating separation system. The highlight of the coated capillary is that it has both anti-protein adsorption and chiral separation properties. Compared with the bare capillary or non-covalently bonded DR/vancomycin-coated capillary, it can not only achieve the separation of four mixed proteins of lysozyme (Lys), bovine serum albumin (BSA), myoglobin (Mb), and ribonuclease A (RNase A), but also shows excellent performance in chiral drugs. The coated capillary effectively solves the problems of low efficiency of the separation column and high sample loss and provides ideas for the development of coated capillaries in the future.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
2
|
Wang F, Cong H, Xing J, Wang S, Shen Y, Yu B. Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta 2020; 221:121493. [PMID: 33076098 DOI: 10.1016/j.talanta.2020.121493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
The non-specific adsorption of protein has caused many problems in the application of materials. In this paper, a tri-block copolymer PEO-PNIPAAm-PSPMAP with double effects were obtained via atom transfer radical copolymerization (ATRP). The double-effect copolymer is covalently bonded to the hydrophobic material through a photosensitizer to achieve surface modification and applied to analytical chemistry. Sufficient hydratable groups (for instance, ether bonds, amide groups, and sulfonic acid groups) in the copolymer provides a basis for the anti-protein adsorption. At the same time, the interaction of the hydrophilic group and isopropyl group with temperature changes provides the possibility of elastic self-cleaning of the material, which is instrumental in extending the circulate lifetime of materials. Therefore, it is an environmentally friendly coating material. Besides, the effective antifouling performance and elastic self-cleaning function of the coating have been confirmed by the dynamic adsorption experiment of a fluorescent protein. The coating is used in capillary electrophoresis (CE), and its excellent protein separation spectrum verifies the practicality of the coating.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Jie Xing
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Centre for Bio Nanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibres and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Reed PA, Cardoso RM, Muñoz RA, Garcia CD. Pyrolyzed cotton balls for protein removal: Analysis of pharmaceuticals in serum by capillary electrophoresis. Anal Chim Acta 2020; 1110:90-97. [PMID: 32278404 DOI: 10.1016/j.aca.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 01/22/2023]
|
4
|
Yu B, Peng Q, Usman M, Ahmed A, Chen Y, Chen X, Wang Y, Shen Y, Cong H. Preparation of photosensitive diazotized poly (vinyl alcohol-b-styrene) covalent capillary coatings for capillary electrophoresis separation of proteins. J Chromatogr A 2019; 1593:174-182. [PMID: 30745136 DOI: 10.1016/j.chroma.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 11/13/2022]
Abstract
In this paper, we have developed a novel method for the preparation of covalently connected capillary coatings in which diazotized poly (vinyl alcohol-b-styrene) (diazo-P(VA-b-St)) was used as a photosensitive coating agent. Firstly, the diazo-P(VA-b-St) coating was self-assembled on the inner surface of the capillary, and then irradiated by ultraviolet (UV) light to convert the ionic bonding into covalent bonding through the unique photochemical reaction of diazo groups. The covalently connected coatings inhibited the protein adsorption on the inner surface of the capillary, as a result, the baseline protein separation of ribonuclease A (RNase A), lysozyme (Lyz) and bovine serum albumin (BSA) were attained by utilizing the capillary electrophoresis (CE). The covalently connected diazo-P(VA-b-St) capillary coatings have greater CE separation performance with magnificent repeatability and enhanced stability, when compared with non-covalently coated or bare capillaries. This strategy to synthesize photosensitive diazo-P(VA-b-St) capillary coatings for their use in capillary electrophoresis separation of proteins is highly environment-friendly as it does not involve the use of extremely noxious and moisture penetrating coatings of silane.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071, China
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yao Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Xin Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yifan Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Shoji A, Takahashi Y, Osato S, Sugawara M. An enzyme-modified capillary as a platform for simultaneous fluorometric detection of d-glucose and l- lactate. J Pharm Biomed Anal 2019; 163:1-8. [PMID: 30268727 DOI: 10.1016/j.jpba.2018.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
The preparation of a glass capillary pattered with lipid layers on which lactate dehydrogenase (LDH) and glucose dehydrogenase (GDH) were regionally adsorbed and its application for simultaneous detection of d-glucose and l-lactate in human serum is described. A lipid layer was formed on the surface of BSA-unabsorbed octadecyltrichlorosilane (OTS) inner wall of a glass capillary. The electrostatic charge of the lipid layer was a key factor for adsorbing the enzymes on the lipid layer. The fluorescence intensities were observed at each enzyme site in the presence of diaphorase (DIA), β-nicotinamide-adenine dinucleotide oxidized (NAD), resazurin, d-glucose and l-lactate. The fluorescence intensities at each enzyme site increased with an increase in the concentration of d-glucose and l-lactate=with the detection limits of 32 μM and 4.9 μM, respectively.
Collapse
Affiliation(s)
- Atsushi Shoji
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan; School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Yusuke Takahashi
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan
| | - Saki Osato
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan
| | - Masao Sugawara
- Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo, 156-8550, Japan
| |
Collapse
|
6
|
Shulman L, Pei L, Bahnasy MF, Lucy CA. High pH instability of quaternary ammonium surfactant coatings in capillary electrophoresis. Analyst 2018; 142:2145-2151. [PMID: 28524193 DOI: 10.1039/c7an00330g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two-tailed cationic surfactant dioctadecyldimethyl ammonium bromide (DODAB) produces semi-permanent coatings that yield strongly reversed electroosmotic flow (EOF), for example -0.31 ± 0.01 cm2 kV-1 s-1 at pH 3.5. Moreover, these coatings are easy to prepare, regenerable, cost effective, and yield high efficiency (520 000-900 000 plates per m) separations of cationic proteins over many runs under acidic (pH 3.5) conditions. Given the quaternary amine functionality of DODAB, we were surprised to observe that DODAB coatings become unstable at pH > 7. At pH 7.2, the EOF of a DODAB coated capillary drifted from reversed to cathodic over only 5 runs, and protein separations became severely compromised. By pH 12, no EOF reversal was observed. Electrophoretic and mass spectrometric studies demonstrate that the coating decomposition involves a surface conversion of the quaternary amine in DODAB to a variety of products, although the exact mechanism remains elusive. Regardless, the results herein demonstrate that semi-permanent coatings based on cationic two-tailed surfactants such as DODAB are limited to separations using acidic buffers.
Collapse
Affiliation(s)
- Lisa Shulman
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2.
| | | | | | | |
Collapse
|
7
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
8
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
9
|
Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
11
|
One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis. Talanta 2015; 144:110-4. [DOI: 10.1016/j.talanta.2015.05.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/21/2022]
|
12
|
Development and characterization of stabilized, polymerized phospholipid bilayers on silica particles for specific immobilization of His-tagged proteins. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Gallagher ES, Adem SM, Baker CA, Ratnayaka SN, Jones IW, Hall HK, Saavedra SS, Aspinwall CA. Highly stabilized, polymer-lipid membranes prepared on silica microparticles as stationary phases for capillary chromatography. J Chromatogr A 2015; 1385:28-34. [PMID: 25670414 DOI: 10.1016/j.chroma.2015.01.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/17/2022]
Abstract
The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer-lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2',4'-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50 mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed >44% increase in retention times (P<0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance toward the development of robust membrane protein-functionalized chromatographic stationary phases.
Collapse
Affiliation(s)
- Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Seid M Adem
- Department of Chemistry, Washburn University, Topeka, KS 66621, United States
| | - Christopher A Baker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Saliya N Ratnayaka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Ian W Jones
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Henry K Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - S Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; Bio5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; Bio5 Institute, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
14
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Gallagher ES, Adem SM, Bright LK, Calderon IAC, Mansfield E, Aspinwall CA. Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis. Electrophoresis 2014; 35:1099-105. [PMID: 24459085 DOI: 10.1002/elps.201300537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/06/2022]
Abstract
Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.
Collapse
Affiliation(s)
- Elyssia S Gallagher
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tiala H, Riekkola ML, Wiedmer SK. Study on capillaries covalently bound with phospholipid vesicles for open-tubular CEC and application to on-line open-tubular CEC-MS. Electrophoresis 2013; 34:3180-8. [DOI: 10.1002/elps.201300260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Heidi Tiala
- Laboratory of Analytical Chemistry; Department of Chemistry; University of Helsinki; Helsinki Finland
| | - Marja-Liisa Riekkola
- Laboratory of Analytical Chemistry; Department of Chemistry; University of Helsinki; Helsinki Finland
| | | |
Collapse
|