1
|
Hafiz Rozaini MN, Saad B, Lim JW, Yahaya N, Ramachandran MR, Kiatkittipong W, Mohamad M, Chan YJ, Goh PS, Shaharun MS. Development of β-cyclodextrin crosslinked citric acid encapsulated in polypropylene membrane protected-μ-solid-phase extraction device for enhancing the separation and preconcentration of endocrine disruptor compounds. CHEMOSPHERE 2022; 303:135075. [PMID: 35618057 DOI: 10.1016/j.chemosphere.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disruptor compounds (EDCs) such as plasticisers, surfactants, pharmaceutical products, personal care products and pesticides are frequently released into the environmental waters. Therefore, a sensitive and environmentally friendly method is entailed to quantify these compounds at their trace level concentrations. This study encapsulated the β-cyclodextrin crosslinked with citric acid in a polypropylene membrane protected-μ-solid phase extraction (BCD-CA μ-SPE) device for preconcentrating the EDCs (triclosan, triclocarban, 2-phenylphenol, 4-tert-octylphenols and bisphenol A) in real water samples before the analysis by high-performance liquid chromatography. FT-IR and TGA results indicated that BCD-CA was successfully synthesised with the formation of ester linkage (1078.33 cm-1) and O-H stretching from carboxylic acid (3434.70 cm-1) with higher thermal stability as compared with native CD with the remaining weight above 72.1% at 500 °C. Several critical parameters such as the sorbent loading, type and amount of salts, extraction time, sample volume, sample pH, type and volume of desorption solvents and desorption time were sequentially optimised and statistically validated. Under the optimum condition, the use of BCD-CA μ-SPE device had manifested good linearity (0.5-500 μg L-1) with the determination of the coefficient range of 0.9807-0.9979. The p-values for the F-test and t-test (6.60 × 10-8 - 1.77 × 10-5) were lesser than 0.05 and low detection limits ranging from 0.27 to 0.84 μg L-1 for all studied EDCs. The developed technique was also successfully applied for EDC analyses in four distinct real water samples, namely, wastewater, river water, tap water and mineral water, with good EDCs recoveries (80.2%-99.9%), low relative standard deviations (0.1%-3.8%, n = 3) with enrichment factor ranging from 9 to 82 folds. These results signified the potential of the BCD-CA μ-SPE device as an efficient, sensitive, and environmentally friendly approach for analyzing EDCs.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bahruddin Saad
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | | | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| | - Maizatul Shima Shaharun
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
2
|
Jafari Z, Reza Hadjmohammadi M. Enhancing enrichment ability of Co-Al- layered double hydroxides-mixed matrix membrane microextraction by deep eutectic solvent for analysis of warfarin in biological samples and its quantification via high-performance liquid chromatography-ultraviolet detection. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Chandrasekaram K, Alias Y, Mohamad S. Sporopollenin supported methylimidazolium ionic liquids based mixed matrix membrane for dispersive membrane micro-extraction of nitro and chloro-substituted phenols from various matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Rozaini MNH, Kiatkittipong W, Saad B, Yahaya N, Shaharun MS, Sangu SS, Mohamed Saheed MS, Wong YF, Mohamad M, Sambudi NS, Lim JW. Green adsorption–desorption of mixed triclosan, triclocarban, 2-phenylphenol, bisphenol A and 4-tert-octylphenol using MXene encapsulated polypropylene membrane protected micro-solid-phase extraction device in amplifying the HPLC analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Zn/Al-layered double hydroxide–graphene oxide nanocomposite use in the solid-phase extraction–preconcentration and HPLC determination of diclofenac. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01252-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
7
|
Jafari Z, Hadjmohammadi MR. A banana peel/silicon glue coated stir bar for extraction of aspirin, diclofenac, ibuprofen and mefenamic acid followed by high performance liquid chromatography-UV detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4429-4437. [PMID: 32853301 DOI: 10.1039/d0ay01332c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, a green, cost-effective, and bio-degradable additive was used for the preparation of a highly efficient sorbent based on silicon glue. Here, a banana peel was pretreated and mixed with silicon glue. It was proved that the prepared banana peel-silicon glue bar is a reliable sorbent for stir bar sorptive extraction of nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, diclofenac, ibuprofen and mefenamic acid in human urine and plasma. Compared to the lab-made sorbents, the prepared sorbent showed high extraction performance, high stability, and satisfactory reproducibility and involved easy preparation. In order to optimize the effective factors, different parameters such as (stirring rate, pH, extraction time, desorption time and elution solvent volume) were optimized using response surface methodology (RSM) through applying Central-Composite Design (CCD). Under the optimum conditions, the linear dynamic ranges of the target analytes were investigated in the range of 0.2-200 μg L-1 with r2 higher than 0.9929. Limits of detection (LODs) and limits of quantification (LOQs) of analytes were in the ranges of 0.04-0.5 and 0.15-1.65, respectively. The reproducibility of the method was also investigated by calculating the relative standard deviation. The RSD was measured to be lower than 4.9%. Bar-to-bar reproducibility at a 100 μg L-1 concentration level was also evaluated to be lower than 5.3% (n = 3). Also, each prepared film can be used up to 64 times without any reduction in extraction performance. Finally, the method was successfully applied for the determination of selected drugs in different biological fluids including urine and plasma samples. The calculated relative recovery in real sample analysis was higher than 90%.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayiiboulevard, 47416-95447 Babolsar, Iran.
| | | |
Collapse
|
8
|
Yih Hui B, Mohamad Zain NN, Mohamad S, Varanusupakul P, Osman H, Raoov M. Poly(cyclodextrin-ionic liquid) based ferrofluid: A new class of magnetic colloid for dispersive liquid phase microextraction of polycyclic aromatic hydrocarbons from food samples prior to GC-FID analysis. Food Chem 2020; 314:126214. [DOI: 10.1016/j.foodchem.2020.126214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/04/2019] [Accepted: 01/12/2020] [Indexed: 12/30/2022]
|
9
|
Mixed Matrix Membrane Tip Extraction Coupled with UPLC–MS/MS for the Monitoring of Nonsteroidal Anti-Inflammatory Drugs in Water Samples. SEPARATIONS 2020. [DOI: 10.3390/separations7010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method, in combination with a mixed matrix membrane microextraction method for the quantification of nonsteroidal anti-inflammatory drugs (NSAIDs) in environmental water samples, is reported. The extraction device was prepared by casting well-dispersed polymeric bonded octadecyl (C18) particles in a cellulose triacetate matrix solution onto commercially available 200 μL micropipette tips. The membrane formed contains 25% of the adsorbent loading amount and was firmly attached to the inner wall of the membrane tip. The dynamic extraction was performed by withdrawing and dispensing the sample solution through the tip device for effective analyte adsorption, followed by the analyte desorption process into 40 μL of methanol and acetonitrile (1:1) prior to UPLC–MS/MS analysis. NSAIDs—namely diclofenac, ibuprofen, indoprofen, naproxen and sulindac—were chosen as targeted analytes. Several extraction parameters were comprehensively optimized, including sample pH value, ionic strength, dynamic extraction cycle, desorption solvent and desorption time. The optimized conditions demonstrated a linear range from 0.25 to 500 ng L−1, with correlation coefficients (r2) from 0.9988 to 0.9992 and detection limits ranging from 0.08 to 0.40 ng L−1. The recoveries of the spiked water samples were between 92% and 99% and exhibited excellent precision relative to standard deviations (RSDs ≤ 4.9%), and enrichment factors (EFs) were at 201–249 for the developed approach.
Collapse
|
10
|
Ganesan T, Lim HN, See HH. Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples. Chromatographia 2020. [DOI: 10.1007/s10337-020-03865-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Liu YD, Xin GZ, Li W, Liu FJ, Yao ZP, Di X. A novel liquid-liquid-solid microextraction strategy for bio-sample preparation by in situ self-assembly of zeolitic imidazolate framework 8 on hollow fiber membrane. Anal Chim Acta 2020; 1095:118-128. [DOI: 10.1016/j.aca.2019.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/28/2023]
|
12
|
Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta 2019; 199:522-531. [DOI: 10.1016/j.talanta.2019.02.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/21/2022]
|
13
|
Application of zinc/aluminum layered double hydroxide nanosorbent in a fixed-bed column for SPE-preconcentration followed by HPLC determination of diclofenac in biological and hospital wastewater samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Advances in Cellulose-Based Sorbents for Extraction of Pollutants in Environmental Samples. Chromatographia 2019. [DOI: 10.1007/s10337-019-03708-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Mukhtar NH, Mamat NA, See HH. Monitoring of tobramycin in human plasma via mixed matrix membrane extraction prior to capillary electrophoresis with contactless conductivity detection. J Pharm Biomed Anal 2018; 158:184-188. [DOI: 10.1016/j.jpba.2018.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 11/27/2022]
|
16
|
Flow Injection Analysis with Direct UV Detection Following Electric Field Driven Membrane Extraction. Molecules 2018; 23:molecules23051000. [PMID: 29695126 PMCID: PMC6100346 DOI: 10.3390/molecules23051000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
A method for on-line matrix elimination to enable selective quantification of ultraviolet absorbing analytes by a flow-injection analysis procedure is described. Selectivity is achieved by electric field driven extraction across a polymer inclusion membrane. The method was demonstrated on the example of the determination of naproxen from spiked human urine. Membranes of 10 μm thickness were employed which consisted of 7.5 mg cellulose triacetate as base polymer, 5 mg of o-nitrophenyl octyl ether as plasticizer and 7.5 mg of Aliquat 336 as cationic carrier. Ten μL of sample was introduced into a continuous stream of background solution consisting of 100 µM aqueous NaClO4 with a flow rate of 2 μL/min while applying a voltage of 150 V to the extraction cell. The target ion was electrokinetically transported across the membrane and enriched in 1.5 μL of a stagnant acceptor solution. This was subsequently pumped past a flow-through UV detector for quantification. The method showed a linear range from 5 to 200 µM with a correlation coefficient of 0.9978 and a reproducibility of typically 7% (n = 8). The detection limit of the method for naproxen was 2 µM.
Collapse
|
17
|
Piri-Moghadam H, Alam MN, Pawliszyn J. Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives. Anal Chim Acta 2017; 984:42-65. [PMID: 28843569 DOI: 10.1016/j.aca.2017.05.035] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
The development of new support and geometries of solid phase microextraction (SPME), including metal fiber assemblies, coated-tip, and thin film microextraction (TFME) (i.e. self-supported, fabric and blade supported), as well as their effects on diffusion and extraction rate of analytes were discussed in the current review. Application of main techniques widely used for preparation of a variety of coating materials of SPME, including sol-gel technique, electrochemical and electrospinning methods as well as the available commercial coatings, were presented. Advantages and limitations of each technique from several aspects, such as range of application, biocompatibility, availability in different geometrical configurations, method of preparation, incorporation of various materials to tune the coating properties, and thermal and physical stability, were also investigated. Future perspectives of each technique to improve the efficiency and stability of the coatings were also summarized. Some interesting materials including ionic liquids (ILs), metal organic frameworks (MOFs) and particle loaded coatings were briefly presented.
Collapse
Affiliation(s)
- Hamed Piri-Moghadam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Md Nazmul Alam
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
18
|
Ng NT, Sanagi MM, Wan Ibrahim WN, Wan Ibrahim WA. Agarose-chitosan-C18 film micro-solid phase extraction combined with high performance liquid chromatography for the determination of phenanthrene and pyrene in chrysanthemum tea samples. Food Chem 2017; 222:28-34. [DOI: 10.1016/j.foodchem.2016.11.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
19
|
Mukhtar NH, See HH. Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples. Anal Chim Acta 2016; 931:57-63. [DOI: 10.1016/j.aca.2016.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/21/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
|
20
|
Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. J Chromatogr A 2015; 1406:34-9. [DOI: 10.1016/j.chroma.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
|
21
|
Beldean-Galea MS, Coman V, Thiébaut D, Vial J. Determination of four acidic nonsteroidal anti-inflammatory drugs in wastewater samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplet and high-performance liquid chromatography. J Sep Sci 2015; 38:641-8. [DOI: 10.1002/jssc.201400933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/07/2022]
Affiliation(s)
| | - Virginia Coman
- Babeş-Bolyai University; Raluca Ripan Institute for Research in Chemistry; Cluj-Napoca Romania
| | - Didier Thiébaut
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris; Paris France
| | - Jérome Vial
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris; Paris France
| |
Collapse
|
22
|
Manzo V, Honda L, Navarro O, Ascar L, Richter P. Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction. Talanta 2014; 128:486-92. [DOI: 10.1016/j.talanta.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/27/2022]
|