1
|
Xia J, Si H, Huang X, Chen X, Fu X, Li G, Lai Q, Li F, Wang W, Shao Z. Metabolomics and Molecular Networking-Guided Screening of Bacillus-Derived Bioactive Compounds Against a Highly Lethal Vibrio Species. Anal Chem 2024; 96:4359-4368. [PMID: 38452345 DOI: 10.1021/acs.analchem.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Microorganisms are important sources of bioactive natural products. However, the complexity of microbial metabolites and the low abundance of active compounds render the isolation and purification process laborious and inefficient. During our search for active substances capable of inhibiting the newly discovered highly lethal Vibrio strain vp-HL, we found that the fermentation broth of multiple Bacillus strains exhibited antibacterial activity. However, the substances responsible for the activity remained unclear. Metabolomics, molecular networking (MN), and the Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) were employed in conjunction with bioactivity screening to predict the antibacterial compounds from Bacillus strains. The analysis of fractions, and their isolation, NMR-based annotation, and bioactivity evaluation of an amicoumacin compound partially confirmed the prediction from these statistical analyses. This work presents the potential of marine Bacillus in producing active substances against Vibrio species. Additionally, it highlighted the significance and feasibility of metabolomics and MN in the dereplication of compounds and the determination of isolation targets.
Collapse
Affiliation(s)
- Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Hongkun Si
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Xiaomei Huang
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Xiangwei Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Fang Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
2
|
Morehouse NJ, Clark TN, Kerr RG, Johnson JA, Gray CA. Caryophyllene Sesquiterpenes from a Chaetomium globosum Endophyte of the Canadian Medicinal Plant Empetrum nigrum. JOURNAL OF NATURAL PRODUCTS 2023; 86:1615-1619. [PMID: 37267043 DOI: 10.1021/acs.jnatprod.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Punctaporonins T (1) and U (2), new caryophyllene sesquiterpenes, were isolated with three known punctaporonins, A (3), B (4), and C (5), from the endophytic fungus Chaetomium globosum (TC2-041). The structures and relative configurations of punctaporonins T and U were elucidated based on a combination of HRESIMS, 1D/2D NMR spectroscopic analysis, and X-ray diffraction analysis, while their absolute configuration is presumed to be consistent with the co-isolated 3-5 on biogenetic arguments. Compound 1 showed weak inhibitory activity against both Mycobacterium tuberculosis and Staphylococcus aureus.
Collapse
Affiliation(s)
- Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Trevor N Clark
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Russell G Kerr
- Nautilus Biosciences Canada Inc., 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - John A Johnson
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
3
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Metabolomics Tools Assisting Classic Screening Methods in Discovering New Antibiotics from Mangrove Actinomycetia in Leizhou Peninsula. Mar Drugs 2021; 19:md19120688. [PMID: 34940687 PMCID: PMC8707991 DOI: 10.3390/md19120688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.
Collapse
|
5
|
Sponge-associated sp . RM66 metabolome induction with N-acetylglucosamine: Antibacterial, antifungal and anti-trypanosomal activities. Saudi J Biol Sci 2021; 28:4691-4698. [PMID: 34354456 PMCID: PMC8324951 DOI: 10.1016/j.sjbs.2021.04.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
The marine sponge Amphimedon sp., collected from Hurghada (Egypt) was investigated for its sponge-derived actinomycetes diversity. Nineteen actinomycetes were cultivated and phylogenetically identified using 16S rDNA gene sequencing were carried out. The strains belong to genera Kocuria, Dietzia, Micrococcus, Microbacterium and Streptomyces. Many silent biosynthetic genes clusters were investigated using genome sequencing of actinomycete strains and has revealed in particular the genus Streptomyces that has indicated their exceptional capacity for the secondary metabolites production that not observed under classical cultivation conditions. In this study, the effect of N-acetylglucosamine on the metabolome of Streptomyces sp. RM66 was investigated using three actinomycetes media (ISP2, M1 and MA). In total, twelve extracts were produced using solid and liquid fermentation approaches. Liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) data were analysed using metabolomics tools to compare natural product production across all crude extracts. Our study highlighted the elicitation effect of N-acetylglucosamine on the secondary metabolite profiles of Streptomyces sp. RM66. These results highlight the of N-acetylglucosamine application as an elicitor to induce the cryptic metabolites and for increasing the chemical diversity. All the twelve extracts were tested for their antibacterial activity was tested against Staphylococcus aureus NCTC 8325, antifungal activity against Candida albicans 5314 (ATCC 90028) and anti-trypanosomal activity against Trypanosoma brucei brucei. Extract St1 showed the most potent one with activities 2.3, 3.2 and 4.7 ug/ml as antibacterial, antifungal and anti-trypanosomal, respectively.
Collapse
|
6
|
Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep 2021; 38:292-300. [PMID: 32706349 PMCID: PMC7855266 DOI: 10.1039/d0np00029a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The question of whether culturable microorganisms will continue to be a viable source of new drug leads is inherently married to the strategies used to collect samples from the environment, the methods used to cultivate microorganisms from these samples, and the processes used to create microbial libraries. An academic microbial natural products (NP) drug discovery program with the latest innovative chromatographic and spectroscopic technology, high-throughput capacity, and bioassays will remain at the mercy of the quality of its microorganism source library. This viewpoint will discuss limitations of sample collection and microbial strain library generation practices. Additionally, it will offer suggestions to innovate these areas, particularly through the targeted cultivation of several understudied bacterial phyla and the untargeted use of mass spectrometry and bioinformatics to generate diverse microbial libraries. Such innovations have potential to impact downstream therapeutic discovery, and make its front end more informed, efficient, and less reliant on serendipity. This viewpoint is not intended to be a comprehensive review of contributing literature and was written with a focus on bacteria. Strategies to discover NPs from microbial libraries, including a variety of genomics and "OSMAC" style approaches, are considered downstream of sample collection and library creation, and thus are out of the scope of this viewpoint.
Collapse
Affiliation(s)
- Antonio Hernandez
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Linh T Nguyen
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA. and Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi, Vietnam
| | - Radhika Dhakal
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Brian T Murphy
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
7
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
8
|
Metabolomic study of marine Streptomyces sp.: Secondary metabolites and the production of potential anticancer compounds. PLoS One 2020; 15:e0244385. [PMID: 33347500 PMCID: PMC7751980 DOI: 10.1371/journal.pone.0244385] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Resorting to a One Strain Many Compounds (OSMAC) approach, the marine Streptomyces sp. BRB081 strain was grown in six different media settings over 1, 2, 3 or 7 days. Extractions of mycelium and broth were conducted separately for each media and cultivation period by sonication using methanol/acetone 1:1 and agitation with ethyl acetate, respectively. All methanol/acetone and ethyl acetate crude extracts were analysed by HPLC-MS/MS and data treatment was performed through GNPS platform using MZmine 2 software. In parallel, the genome was sequenced, assembled and mined to search for biosynthetic gene clusters (BGC) of secondary metabolites using the AntiSMASH 5.0 software. Spectral library search tool allowed the annotation of desferrioxamines, fatty acid amides, diketopiperazines, xanthurenic acid and, remarkably, the cyclic octapeptides surugamides. Molecular network analysis allowed the observation of the surugamides cluster, where surugamide A and the protonated molecule corresponding to the B-E isomers, as well as two potentially new analogues, were detected. Data treatment through MZmine 2 software allowed to distinguish that the largest amount of surugamides was obtained by cultivating BRB081 in SCB medium during 7 days and extraction of culture broth. Using the same data treatment, a chemical barcode was created for easy visualization and comparison of the metabolites produced overtime in all media. By genome mining of BRB081 four regions of biosynthetic gene clusters of secondary metabolites were detected supporting the metabolic data. Cytotoxic evaluation of all crude extracts using MTT assay revealed the highest bioactivity was also observed for extracts obtained in the optimal conditions as those for surugamides production, suggesting these to be the main active compounds herein. This method allowed the identification of compounds in the crude extracts and guided the selection of best conditions for production of bioactive compounds.
Collapse
|
9
|
Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR). Mar Drugs 2020; 18:md18120649. [PMID: 33348536 PMCID: PMC7765863 DOI: 10.3390/md18120649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of novel natural products (NPs) that will serve as lead structures has to be an ongoing effort to fill the respective development pipelines. However, identification of NPs, which possess a potential for application in e.g., the pharma or agro sector, must be as cost effective and fast as possible. Furthermore, the amount of sample available for initial testing is usually very limited, not least because of the fact that the impact on the environment, i.e., the sampled biosystem, should be kept minimal. Here, our pipeline SeaPEPR is described, in which a primary bioactivity screening of crude extracts is combined with the analysis of their metabolic fingerprint. This enabled prioritization of samples for subsequent microfractionation and dereplication of the active compounds early in the workflow. As a case study, 76 marine sponge-derived extracts were screened against a microbial screening panel. Thereunder, human pathogenic bacteria (Escherichia coli ATCC35218 and Staphylococcus aureus ATCC33592) and yeast (Candida albicans FH2173), as well as the phytopathogenic fungus Septoria tritici MUCL45407. Overall, nine extracts revealed activity against at least one test organism. Metabolic fingerprinting enabled assigning four active extracts into one metabolic group; therefore, one representative was selected for subsequent microfractionation. Dereplication of the active fractions showed a new dibrominated aplysinopsin and a hypothetical chromazonarol stereoisomer derivative. Furthermore, inhibitory activity against the common plant pest Septoria tritici was discovered for NPs of marine origin.
Collapse
|
10
|
Hei Y, Zhang H, Tan N, Zhou Y, Wei X, Hu C, Liu Y, Wang L, Qi J, Gao JM. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol Res 2020; 244:126652. [PMID: 33310352 DOI: 10.1016/j.micres.2020.126652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Actinobacteria that inhabit lichen symbionts are considered a promising yet previously underexplored source of novel compounds. Here, for the first time, we conducted a comprehensive investigation with regard to strain isolation and identification of lichen-associated actinobacteria from Tibet Plateau, antimicrobial activity screening, biosynthetic genes detection, bioactive metabolites identification and activity prediction. A large number of culturable actinomycetes were isolated from lichens around Qinghai Lake, in Qinghai-Tibet Plateau. Twenty-seven strains with distinct morphological characteristics were preliminarily studied. 16S rRNA gene identification showed that 13 strains were new species. The PCR-screening of specific biosynthetic genes indicated that these 27 isolates had abundant intrinsic biosynthetic potential. The antimicrobial activity experiment screened out some potential biological control antagonistic bacteria. The metabolites of 13 strains of Streptomyces with antibacterial activity were analyzed by LC-HRMS, and further 18 compounds were identified by NMR and / or LC-HRMS. The identified compounds were mainly pyrrolidine and indole derivatives, as well as anthracyclines. Seven compounds were identified with less biological activity, then predicted and evaluated their biological activity. The predicted results showed that compound 2 had excellent inhibitory activity on HIV-1 reverse transcriptase. Overall, the results indicate actinobacteria isolated from unexploited plateau lichen are promising sources of biological active metabolite, which could provide important bioactive compounds as potential antibiotic drugs.
Collapse
Affiliation(s)
- Yueyu Hei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China; College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Hongli Zhang
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Tan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, China
| | - Yuhan Zhou
- College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xin Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Chenhao Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yuande Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China; College of Innovation and Experiment, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
11
|
Riyanti, Balansa W, Liu Y, Sharma A, Mihajlovic S, Hartwig C, Leis B, Rieuwpassa FJ, Ijong FG, Wägele H, König GM, Schäberle TF. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep 2020; 10:19614. [PMID: 33184304 PMCID: PMC7665026 DOI: 10.1038/s41598-020-76256-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023] Open
Abstract
The potential of sponge-associated bacteria for the biosynthesis of natural products with antibacterial activity was evaluated. In a preliminary screening 108 of 835 axenic isolates showed antibacterial activity. Active isolates were identified by 16S rRNA gene sequencing and selection of the most promising strains was done in a championship like approach, which can be done in every lab and field station without expensive equipment. In a competition assay, strains that inhibited most of the other strains were selected. In a second round, the strongest competitors from each host sponge competed against each other. To rule out that the best competitors selected in that way represent similar strains with the same metabolic profile, BOX PCR experiments were performed, and extracts of these strains were analysed using metabolic fingerprinting. This proved that the strains are different and have various metabolic profiles, even though belonging to the same genus, i.e. Bacillus. Furthermore, it was shown that co-culture experiments triggered the production of compounds with antibiotic activity, i.e. surfactins and macrolactin A. Since many members of the genus Bacillus possess the genetic equipment for the biosynthesis of these compounds, a potential synergism was analysed, showing synergistic effects between C14-surfactin and macrolactin A against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Riyanti
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
- Faculty of Fisheries and Marine Science, Jenderal Soedirman University, 53122, Purwokerto, Indonesia
| | - Walter Balansa
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Abha Sharma
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Sanja Mihajlovic
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Christoph Hartwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Benedikt Leis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Frets Jonas Rieuwpassa
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Frans Gruber Ijong
- Department of Fisheries and Marine Science, Politeknik Negeri Nusa Utara, 95821, North Sulawesi, Indonesia
| | - Heike Wägele
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany.
| |
Collapse
|
12
|
Liang L, Wang G, Haltli B, Marchbank DH, Stryhn H, Correa H, Kerr RG. Metabolomic Comparison and Assessment of Co-cultivation and a Heat-Killed Inducer Strategy in Activation of Cryptic Biosynthetic Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:2696-2705. [PMID: 32869646 DOI: 10.1021/acs.jnatprod.0c00621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Co-cultivation has been used as a promising tool to turn on or up-regulate cryptic biosynthetic pathways for microbial natural product discovery. Recently, a modified culturing strategy similar to co-cultivation was investigated, where heat-killed inducer cultures were supplemented to the culture medium of producer fermentations to induce cryptic pathways. In the present study, the repeatability and effectiveness of both methods in turning on cryptic biosynthetic pathways were unbiasedly assessed using UHPLC-HRESIMS-based metabolomics analysis. Both induction methods had good repeatability, and they resulted in very different induced metabolites from the tested producers. Co-cultivation generated more induced mass features than the heat-killed inducer cultures, while both methods resulted in the induction of mass features not observed using the other induction method. As examples, pathways leading to two new natural products, N-carbamoyl-2-hydroxy-3-methoxybenzamide (1) and carbazoquinocin G (5), were induced and up-regulated through co-culturing a producer Streptomyces sp. RKND-216 with inducers Alteromonas sp. RKMC-009 and M. smegmatis ATCC 120515, respectively.
Collapse
Affiliation(s)
- Libang Liang
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
| | - Guanqiao Wang
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
| | - Bradley Haltli
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | - Douglas H Marchbank
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | | | - Hebelin Correa
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Canada
- Nautilus Biosciences Croda, Charlottetown C1A 4P3, Canada
| |
Collapse
|
13
|
Chanana S, Thomas CS, Zhang F, Rajski SR, Bugni TS. hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R. Metabolites 2020; 10:E297. [PMID: 32708222 PMCID: PMC7407629 DOI: 10.3390/metabo10070297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry. While these tools have shown successful outcomes in the past, datasets are becoming much larger and require a new approach. Since PCA models are dependent on the members of the group being modeled, large datasets with many members make it difficult to accurately model the variance in the data. Our tool, hcapca, first groups strains based on the similarity of their chemical composition, and then applies PCA to the smaller sub-groups yielding more robust PCA models. This allows for scalable chemical comparisons among hundreds of strains with thousands of molecular features. As a proof of concept, we applied our open-source tool to a dataset with 1046 LCMS profiles of marine invertebrate associated bacteria and discovered three new analogs of an established anticancer agent from one promising strain.
Collapse
Affiliation(s)
| | | | | | | | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; (S.C.); (C.S.T.); (F.Z.); (S.R.R.)
| |
Collapse
|
14
|
Stuart KA, Welsh K, Walker MC, Edrada-Ebel R. Metabolomic tools used in marine natural product drug discovery. Expert Opin Drug Discov 2020; 15:499-522. [PMID: 32026730 DOI: 10.1080/17460441.2020.1722636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The marine environment is a very promising resource for natural product research, with many of these reaching the market as new drugs, especially in the field of cancer therapy as well as the drug discovery pipeline for new antimicrobials. Exploitation for bioactive marine compounds with unique structures and novel bioactivity such as the isoquinoline alkaloid; trabectedin, the polyether macrolide; halichondrin B, and the peptide; dolastatin 10, requires the use of analytical techniques, which can generate unbiased, quantitative, and qualitative data to benefit the biodiscovery process. Metabolomics has shown to bridge this understanding and facilitate the development of new potential drugs from marine sources and particularly their microbial symbionts.Areas covered: In this review, articles on applied secondary metabolomics ranging from 1990-2018 as well as to the last quarter of 2019 were probed to investigate the impact of metabolomics on drug discovery for new antibiotics and cancer treatment.Expert opinion: The current literature review highlighted the effectiveness of metabolomics in the study of targeting biologically active secondary metabolites from marine sources for optimized discovery of potential new natural products to be made accessible to a R&D pipeline.
Collapse
Affiliation(s)
- Kevin Andrew Stuart
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Keira Welsh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Molly Clare Walker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Sebak M, Saafan AE, AbdelGhani S, Bakeer W, El-Gendy AO, Espriu LC, Duncan K, Edrada-Ebel R. Bioassay- and metabolomics-guided screening of bioactive soil actinomycetes from the ancient city of Ihnasia, Egypt. PLoS One 2019; 14:e0226959. [PMID: 31887193 PMCID: PMC6936774 DOI: 10.1371/journal.pone.0226959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Literature surveys, taxonomical differences, and bioassay results have been utilized in the discovery of new natural products to aid in Actinomycetes isolate-selection. However, no or less investigation have been done on establishing the differences in metabolomic profiles of the isolated microorganisms. The study aims to utilise bioassay- and metabolomics-guided tools that included dereplication study and multivariate analysis of the NMR and mass spectral data of microbial extracts to assist the selection of isolates for scaling-up the production of antimicrobial natural products. A total of 58 actinomycetes were isolated from different soil samples collected from Ihnasia City, Egypt and screened for their antimicrobial activities against indicator strains that included Bacillus subtilis, Escherichia coli, methicillin-resistant Staphylococcus aureus and Candida albicans. A number of 25 isolates were found to be active against B. subtilis and/or to at least one of the tested indicator strains. Principal component analyses showed chemical uniqueness for four outlying bioactive actinomycetes extracts. In addition, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and dereplication study led us to further select two outlying anti-MRSA active isolates MS.REE.13 and 22 for scale-up work. MS.REE.13 and 22 exhibited zones of inhibition at 19 and 13 mm against MRSA, respectively. A metabolomics-guided approach provided the steer to target the bioactive metabolites (P<0.01) present in a crude extract or fraction even at nanogram levels but it was a challenge that such low-yielding bioactive natural products would be feasible to isolate. Validated to occur only on the active side of OPLS-DA loadings plot, the isolated compounds exhibited medium to weak antibiotic activity with MIC values between 250 and 800 μM. Two new compounds, P_24306 (C10H13N2) and N_12799 (C18H32O3) with MICs of 795 and 432 μM, were afforded from the scale-up of MS.REE. 13 and 22, respectively.
Collapse
Affiliation(s)
- Mohamed Sebak
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Menoufia, Egypt
- * E-mail: (MS); (RE)
| | - Amal E. Saafan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Menoufia, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sameh AbdelGhani
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Walid Bakeer
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O. El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Laia Castaño Espriu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Katherine Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
- * E-mail: (MS); (RE)
| |
Collapse
|
16
|
Igboeli HA, Marchbank DH, Correa H, Overy D, Kerr RG. Discovery of Primarolides A and B from Marine Fungus Asteromyces cruciatus Using Osmotic Stress and Treatment with Suberoylanilide Hydroxamic Acid. Mar Drugs 2019; 17:E435. [PMID: 31344982 PMCID: PMC6723326 DOI: 10.3390/md17080435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 11/16/2022] Open
Abstract
Advances in whole-genome sequencing of many fungal species has revealed the presence of numerous "silent" biosynthetic genes, highlighting their potential to produce a wide variety of natural products. These silent biosynthetic genes are regulated in part by their highly condensed chromatin structure, which can be modified to allow transcription in response to external stimuli. In this study, Asteromyces cruciatus was subjected to both epigenetic modification and osmotic stress to enhance the production of new natural products. This "cooperative induction" strategy led to the isolation and characterization of two new polyketides from a fermentation of A. cruciatus treated with suberoylanilide hydroxamic acid and sodium chloride. The metabolic profiles of the control and treated samples were assessed using ultra-high performance liquid chromatography high-resolution electrospray ionization mass spectrometry (UHPLC-HRESIMS) metabolomic analysis, highlighting the upregulation of two new polyketides, primarolides A and B. These compounds were purified using reversed-phase flash chromatography followed by high-performance liquid chromatography, and their planar structures were established using NMR spectroscopy.
Collapse
Affiliation(s)
- Hope A Igboeli
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Douglas H Marchbank
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- Nautilus Biosciences Croda, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Hebelin Correa
- Nautilus Biosciences Croda, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - David Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Nautilus Biosciences Croda, Regis and Joan Duffy Research Centre, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
17
|
Martinez-Farina CF, Driscoll S, Wicks C, Burton I, Wentzell PD, Berrué F. Chemical Barcoding: A Nuclear-Magnetic-Resonance-Based Approach To Ensure the Quality and Safety of Natural Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7765-7774. [PMID: 31240917 DOI: 10.1021/acs.jafc.9b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the greatest challenges facing the functional food and natural health product (NHP) industries is sourcing high-quality, functional, natural ingredients for their finished products. Unfortunately, the lack of ingredient standards, modernized analytical methodologies, and industry oversight creates the potential for low quality and, in some cases, deliberate adulteration of ingredients. By exploring a diverse library of NHPs provided by the independent certification organization ISURA, we demonstrated that nuclear magnetic resonance (NMR) spectroscopy provides an innovative solution to authenticate botanicals and warrant the quality and safety of processed foods and manufactured functional ingredients. Two-dimensional NMR experiments were shown to be a robust and reproducible approach to capture the content of complex chemical mixtures, while a binary normalization step allows for emphasizing the chemical diversity in each sample, and unsupervised statistical methodologies provide key advantages to classify, authenticate, and highlight the potential presence of additives and adulterants.
Collapse
Affiliation(s)
- Camilo F Martinez-Farina
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Stephen Driscoll
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Chelsi Wicks
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Ian Burton
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Peter D Wentzell
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| |
Collapse
|
18
|
Sproule A, Correa H, Decken A, Haltli B, Berrué F, Overy DP, Kerr RG. Terrosamycins A and B, Bioactive Polyether Ionophores from Streptomyces sp. RKND004 from Prince Edward Island Sediment. Mar Drugs 2019; 17:md17060347. [PMID: 31212620 PMCID: PMC6627438 DOI: 10.3390/md17060347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
Terrosamycins A (1) and B (2), two polycyclic polyether natural products, were purified from the fermentation broth of Streptomyces sp. RKND004 isolated from Prince Edward Island sediment. The one strain-many compounds (OSMAC) approach coupled with UPLC-HRMS-based metabolomics screening led to the identification of these compounds. The structure of 1 was determined from analysis of NMR, HRMS, and X-ray diffraction data. NMR experiments performed on 2 revealed the presence of two methoxy groups replacing two hydroxy groups in 1. Like other polyether ionophores, 1 and 2 exhibited excellent antibiotic activity against Gram-positive pathogens. Interestingly, the terrosamycins also exhibited activity against two breast cancer cell lines.
Collapse
Affiliation(s)
- Amanda Sproule
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Hebelin Correa
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB E3B 5A3, Canada.
| | - Bradley Haltli
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| | - Fabrice Berrué
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - David P Overy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Nautilus Biosciences Croda, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Prince Edward Island, Charlottetown, PE C1A 4P3 Canada.
| |
Collapse
|
19
|
Gohil AR, Deshmukh SK, Bhattacharya V, Lavhale R, Verekar S, Kate AS. Exophiarin, an isocoumarin from the fungus Exophiala sp. with antihyperglycemic activity. Nat Prod Res 2019; 35:1573-1581. [PMID: 31170816 DOI: 10.1080/14786419.2019.1624957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical characterization of ethyl acetate extract of Exophiala sp. has afforded the isolation of three compounds including a new isocoumarin named exophiarin (1). Exophiala sp. was obtained from the soil containing dumped organic waste (litter). Initially, LC-UV-MS analysis of the extract of Exophiala sp. revealed the presence of a new compound having molecular weight 438 (1) and previously reported TPI-2 and TPI-5. The novelty was established using advanced database search comprising of biological source, molecular weight and UV profile. 1D, 2D NMR and HRMS data have been used for structure elucidation. Exophiarin with TPI-2 and TPI-5 have displayed moderate improvement in glucose uptake activity when tested in rat skeletal muscle cell line L6.
Collapse
Affiliation(s)
- Akash R Gohil
- Natural Products Microbiology, Piramal Enterprises Limited, Mumbai, India.,Natural Products Bioactivity Lab, Piramal Enterprises Limited, Mumbai, India
| | - Sunil K Deshmukh
- Natural Products Microbiology, Piramal Enterprises Limited, Mumbai, India
| | | | - Rahul Lavhale
- Natural Products Bioactivity Lab, Piramal Enterprises Limited, Mumbai, India
| | - Shilpa Verekar
- Natural Products Microbiology, Piramal Enterprises Limited, Mumbai, India
| | - Abhijeet S Kate
- Natural Products Bioactivity Lab, Piramal Enterprises Limited, Mumbai, India.,National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
Liang L, Sproule A, Haltli B, Marchbank DH, Berrué F, Overy DP, McQuillan K, Lanteigne M, Duncan N, Correa H, Kerr RG. Discovery of a New Natural Product and a Deactivation of a Quorum Sensing System by Culturing a "Producer" Bacterium With a Heat-Killed "Inducer" Culture. Front Microbiol 2019; 9:3351. [PMID: 30705672 PMCID: PMC6344404 DOI: 10.3389/fmicb.2018.03351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/31/2018] [Indexed: 11/28/2022] Open
Abstract
Herein we describe a modified bacterial culture methodology as a tool to discover new natural products via supplementing actinomycete fermentation media with autoclaved cultures of “inducer” microbes. Using seven actinomycetes and four inducer microbes, we detected 28 metabolites that were induced in UHPLC-HRESIMS-based analysis of bacterial fermentations. Metabolomic analysis indicated that each inducer elicited a unique response from the actinomycetes and that some chemical responses were specific to each inducer-producer combination. Among these 28 metabolites, hydrazidomycin D, a new hydrazide-containing natural product was isolated from the pair Streptomyces sp. RKBH-B178 and Mycobacterium smegmatis. This result validated the effectiveness of the strategy in discovering new natural products. From the same set of induced metabolites, an in-depth investigation of a fermentation of Streptomyces sp. RKBH-B178 and autoclaved Pseudomonas aeruginosa led to the discovery of a glucuronidated analog of the pseudomonas quinolone signal (PQS). We demonstrated that RKBH-B178 is able to biotransform the P. aeruginosa quorum sensing molecules, 2-heptyl-4-quinolone (HHQ), and PQS to form PQS-GlcA. Further, PQS-GlcA was shown to have poor binding affinity to PqsR, the innate receptor of HHQ and PQS.
Collapse
Affiliation(s)
- Libang Liang
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Amanda Sproule
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Brad Haltli
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.,Nautilus Biosciences Croda, Charlottetown, PE, Canada
| | - Douglas H Marchbank
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada.,Nautilus Biosciences Croda, Charlottetown, PE, Canada
| | - Fabrice Berrué
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David P Overy
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Martin Lanteigne
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Noelle Duncan
- Nautilus Biosciences Croda, Charlottetown, PE, Canada
| | | | - Russell G Kerr
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada.,Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.,Nautilus Biosciences Croda, Charlottetown, PE, Canada
| |
Collapse
|
21
|
Gössinger E. Chemistry of the Secondary Metabolites of Termites. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:1-384. [PMID: 31637529 DOI: 10.1007/978-3-030-12858-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.
Collapse
Affiliation(s)
- Edda Gössinger
- Institute of Chemistry, University of Vienna, Vienna, Austria.
- , Mistelbach, Austria.
| |
Collapse
|
22
|
Arango C, Acosta-Gonzalez A, Parra-Giraldo CM, Sánchez-Quitian ZA, Kerr R, Díaz LE. Characterization of Actinobacterial Communities from Arauca River Sediments (Colombia) Reveals Antimicrobial Potential Presented in Low Abundant Isolates. Open Microbiol J 2018; 12:181-194. [PMID: 29997703 PMCID: PMC5997859 DOI: 10.2174/1874285801812010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION New strategies have been arisen to set a rapid and effective screening for selection of microorganism with bioactive potential. This study suggests that combination of physicochemical pretreatments and taxonomic dereplication of microbial collections through MALDI-TOF MS, facilitates the detection of low abundance actinobacteria with potential as a source of antimicrobial agents. MATERIAL AND METHODS An unstudied microbial community from a tropical river sediment in Colombian Orinoquía is described, applying an extended cultivation strategy using physicochemical pretreatments, biological screenings and taxonomic dereplication through MALDI-TOF MS approach. RESULTS Actinobacteria-like isolates (790) were growth and their antimicrobial activity was assessed against methicillin-resistant Staphylococcus aureus, Vancomycin-resistant Enterococcus faecium, extended-spectrum β-lactamase Klebsiella pnumoniae, and clinical isolates of Cladosporium cladosporioides and Epicoccum nigrum. Seventy-eight isolates, belonging to the Streptomycetaceae family according to 16S rDNA analysis were found to have antimicrobial activity and were categorized as low abundance actinobacteria by MALDI-TOF MS. CONCLUSION The results suggest that combination of physicochemical pretreatments and taxonomic dereplication of microbial collections through MALDI-TOF MS, facilitates the detection of low abundance actinobacteria with potential as a source of antimicrobial agents.
Collapse
Affiliation(s)
- Carolina Arango
- Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Alejandro Acosta-Gonzalez
- Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Claudia M. Parra-Giraldo
- Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Zilpa A. Sánchez-Quitian
- Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| | - Russell Kerr
- University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Luis E. Díaz
- Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Colombia
| |
Collapse
|
23
|
Masand M, Sivakala KK, Menghani E, Thinesh T, Anandham R, Sharma G, Sivakumar N, Jebakumar SRD, Jose PA. Biosynthetic Potential of Bioactive Streptomycetes Isolated From Arid Region of the Thar Desert, Rajasthan (India). Front Microbiol 2018; 9:687. [PMID: 29720968 PMCID: PMC5915549 DOI: 10.3389/fmicb.2018.00687] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Acquisition of Actinobacteria, especially Streptomyces from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some Streptomyces strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method. Among them, 12 strains were identified by a two-level antimicrobial screening method, exerting antimicrobial effects against a panel of indicator strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species. Based on their potent antimicrobial activity, four isolates were further explored by 16S rRNA gene-based identification, genetic screening, and metabolomic analysis; and it was found that these strains belong to the genus Streptomyces. The selected strains were found to have polyketide synthase and non-ribosomal peptide synthetase systems. In addition, extracellular metabolomic screening revealed that the isolates produced analogs of doxorubicinol, pyrromycin, erythromycin, and 6-13 other putative novel metabolites. These results demonstrate the significance of Streptomyces inhabiting the arid region of Thar Desert, suggesting that similar arid environments can be considered as the reservoirs of novel Streptomyces strains that could have biotechnological significance.
Collapse
Affiliation(s)
- Meeta Masand
- School of Life Sciences, Suresh Gyan Vihar University, Jaipur, India
| | | | - Ekta Menghani
- Department of Biotechnology, School of Sciences, JECRC University, Jaipur, India
| | - Thangathurai Thinesh
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Gaurav Sharma
- School of Life Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Solomon R D Jebakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
24
|
Conde-Martínez N, Acosta-González A, Díaz LE, Tello E. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiol 2017; 17:230. [PMID: 29216824 PMCID: PMC5721385 DOI: 10.1186/s12866-017-1136-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 12/04/2022] Open
Abstract
Background Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). Results Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3–29 and A1SM3–36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3–36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract. The extract of this strain was subjected to a bioautography assay, and 3 different fractions exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Based on the amount obtained for each fraction, F3 was selected to isolate and identify its metabolites. The major compound was identified by NMR and HRMS as 13-cis-docosenamide, an amide that has been previously reported to be an antimicrobial and cytotoxic compound. Conclusions Our results shows the utility of our strategy in detecting bioactive molecules in initial mixed cultures by biological assays, resulting in the isolation and characterization of Vibrio sp. A1SM3–36-8, a halophilic strain with great antibacterial and cytotoxic potential. Electronic supplementary material The online version of this article (10.1186/s12866-017-1136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Conde-Martínez
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Alejandro Acosta-González
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Luis E Díaz
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Edisson Tello
- Bioscience Doctoral Program, Grupo de Investigación en Bioprospección, Faculty of Engineering, Universidad de La Sabana, Campus Puente del Común, Km 7, Autopista Norte de Bogotá, Chía, Colombia.
| |
Collapse
|
25
|
Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. Biodiversity of Actinobacteria from the South Pacific and the Assessment of Streptomyces Chemical Diversity with Metabolic Profiling. Mar Drugs 2017; 15:E286. [PMID: 28892017 PMCID: PMC5618425 DOI: 10.3390/md15090286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
Recently, bioprospecting in underexplored habitats has gained enhanced focus, since new taxa of marine actinobacteria can be found, and thus possible new metabolites. Actinobacteria are in the foreground due to their versatile production of secondary metabolites that present various biological activities, such as antibacterials, antitumorals and antifungals. Chilean marine ecosystems remain largely unexplored and may represent an important source for the discovery of bioactive compounds. Various culture conditions to enrich the growth of this phylum were used and 232 bacterial strains were isolated. Comparative analysis of the 16S rRNA gene sequences led to identifying genetic affiliations of 32 genera, belonging to 20 families. This study shows a remarkable culturable diversity of actinobacteria, associated to marine environments along Chile. Furthermore, 30 streptomycete strains were studied to establish their antibacterial activities against five model strains, Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa, demonstrating abilities to inhibit bacterial growth of Gram-positive bacteria. To gain insight into their metabolic profiles, crude extracts were submitted to liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis to assess the selection of streptomycete strains with potentials of producing novel bioactive metabolites. The combined approach allowed for the identification of three streptomycete strains to pursue further investigations. Our Chilean marine actinobacterial culture collection represents an important resource for the bioprospection of novel marine actinomycetes and its metabolites, evidencing their potential as producers of natural bioproducts.
Collapse
Affiliation(s)
- Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Valentina González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|
26
|
Chanana S, Thomas CS, Braun DR, Hou Y, Wyche TP, Bugni TS. Natural Product Discovery Using Planes of Principal Component Analysis in R (PoPCAR). Metabolites 2017; 7:metabo7030034. [PMID: 28703778 PMCID: PMC5618319 DOI: 10.3390/metabo7030034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Rediscovery of known natural products hinders the discovery of new, unique scaffolds. Efforts have mostly focused on streamlining the determination of what compounds are known vs. unknown (dereplication), but an alternative strategy is to focus on what is different. Utilizing statistics and assuming that common actinobacterial metabolites are likely known, focus can be shifted away from dereplication and towards discovery. LC-MS-based principal component analysis (PCA) provides a perfect tool to distinguish unique vs. common metabolites, but the variability inherent within natural products leads to datasets that do not fit ideal standards. To simplify the analysis of PCA models, we developed a script that identifies only those masses or molecules that are unique to each strain within a group, thereby greatly reducing the number of data points to be inspected manually. Since the script is written in R, it facilitates integration with other metabolomics workflows and supports automated mass matching to databases such as Antibase.
Collapse
Affiliation(s)
- Shaurya Chanana
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Chris S Thomas
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Doug R Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| | - Thomas P Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
- Exploratory Science Center, Merck & Co., 320 Bent St., Cambridge, MA 02141, USA.
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
27
|
Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front Microbiol 2017; 8:1106. [PMID: 28663748 PMCID: PMC5471306 DOI: 10.3389/fmicb.2017.01106] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/31/2017] [Indexed: 12/28/2022] Open
Abstract
Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon UniversityAsan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-siSouth Korea
| |
Collapse
|
28
|
Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One 2017; 12:e0170148. [PMID: 28225766 PMCID: PMC5321270 DOI: 10.1371/journal.pone.0170148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.
Collapse
Affiliation(s)
- Luz A. Betancur
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de Caldas. Departamento de Química. Edificio Orlando Sierra, Bloque B, Sede Palogrande Calle. Manizales, Caldas, Colombia
| | - Sandra J. Naranjo-Gaybor
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de las Fuerzas Armadas, ESPE Carrera de Ingeniería Agropecuaria IASA II Av. General Rumiñahui s/n, Sangolquí- Ecuador
| | - Diana M. Vinchira-Villarraga
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Nubia C. Moreno-Sarmiento
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Luis A. Maldonado
- Universidad Autónoma Metropolitana Rectoría—Secretaría General, Prolongación Canal de Miramontes, Col. Ex-hacienda San Juan de Dios, Tlalpan, México DF
| | - Zulma R. Suarez-Moreno
- Investigación y Desarrollo, Empresa Colombiana de Productos Veterinarios VECOL S.A., Bogotá D.C
| | | | - Gillermo F. Padilla-Gonzalez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do de Sao Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, Ribeirão Preto–SP, Brazil
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Programa de Biología Marina, Universidad Jorge Tadeo Lozano, Carrera, Modulo, Oficina, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Freddy A. Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| |
Collapse
|
29
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
30
|
Jose PA, Jha B. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics. Front Microbiol 2016; 7:1295. [PMID: 27594853 PMCID: PMC4990552 DOI: 10.3389/fmicb.2016.01295] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivating researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR - Central Salt and Marine Chemicals Research Institute Bhavnagar, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR - Central Salt and Marine Chemicals Research InstituteBhavnagar, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial ResearchNew Delhi, India
| |
Collapse
|
31
|
Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges. PLoS One 2015; 10:e0138528. [PMID: 26407167 PMCID: PMC4583450 DOI: 10.1371/journal.pone.0138528] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/01/2015] [Indexed: 01/22/2023] Open
Abstract
Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.
Collapse
Affiliation(s)
- Cheng Cheng
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Lynsey MacIntyre
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Usama Ramadan Abdelmohsen
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Hannes Horn
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Paraskevi N. Polymenakou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Gournes Pediados, Heraklion, Crete, Greece
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail: (RE-E); (UH)
| | - Ute Hentschel
- Dept. of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
- * E-mail: (RE-E); (UH)
| |
Collapse
|
32
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
33
|
Zhang F, Adnani N, Vazquez-Rivera E, Braun DR, Tonelli M, Andes DR, Bugni TS. Application of 3D NMR for Structure Determination of Peptide Natural Products. J Org Chem 2015; 80:8713-9. [PMID: 26273993 PMCID: PMC4696765 DOI: 10.1021/acs.joc.5b01486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the advances in NMR, structure determination is often slow and constitutes a bottleneck in natural products discovery. Removal of this bottleneck would greatly improve the throughput for antibiotic discovery as well as other therapeutic areas. Overall, faster structure methods for structure determination will serve the natural products community in a broad manner. This report describes the first application of 3D NMR for elucidation of two microbially produced peptide natural products with novel structures. The methods are cost-effective and greatly improve the confidence in a proposed structure.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Navid Adnani
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Emmanuel Vazquez-Rivera
- Molecular & Environmental Toxicology Center, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - David R. Andes
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Harinantenaina Rakotondraibe L, Rasolomampianina R, Park HY, Li J, Slebodnik C, Brodie PJ, Blasiak LC, Hill R, TenDyke K, Shen Y, Cassera MB, Rejo F, Kingston DGI. Antiproliferative and antiplasmodial compounds from selected Streptomyces species. Bioorg Med Chem Lett 2015; 25:5646-9. [PMID: 26508548 DOI: 10.1016/j.bmcl.2015.07.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
In continuation of our ongoing search for bioactive compounds from microbial extracts, we performed antiproliferative and/or antimalarial assays on extracts of 806 microbial species isolated from Madagascan marine organisms, on 1317 species isolated from Madagascan soil samples and on a Streptomyces species (S.4) from a marine sponge collected from the Florida Keys. This work identified active extracts from four Streptomyces isolates (S.1, S.2, S.3 and S.4). The extracts of Streptomyces S.1 and S.2 showed antiproliferative activity against the A2780 ovarian cancer cell line, while those of S.3 and S.4 displayed both antiproliferative and antimalarial activity. Bioassay-guided fractionation coupled with dereplication of the active extracts led to the identification and isolation of nonactin (1), monactin (2), dinactin (3), ±-nonactic acid (4), toyocamycin (5), piperafizine A (6) and a new dipeptide named xestostreptin (7). The structures of all isolated compounds 1-7 were elucidated by analyses of their NMR spectroscopic and mass spectrometric data, and were confirmed by comparison with the data reported in the literature. Compound 6 was crystallized and subjected to X-ray diffraction analysis to confirm its structure as piperafizine A (6). Compounds 1-3 displayed strong antiproliferative activity against A2780 ovarian cancer cells (IC50 values of 0.1, 0.13 and 0.2 μM, respectively), A2058 melanoma cells (IC50 values of 0.2, 0.02 and 0.02 μM, respectively), and H522-T1 non small-cell cancer lung cells (IC50 values of 0.1, 0.01 and 0.01 μM, respectively), while compounds 4 and 7 exhibited weak antiplasmodial activity against the Dd2 strain of Plasmodium falciparum, with IC50 values of 6.5 and 50 μM, respectively.
Collapse
Affiliation(s)
- L Harinantenaina Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| | - Rado Rasolomampianina
- Centre National de Recherches sur l'environnement, B.P. 1739, Antananarivo 101, Madagascar
| | - Hyun-Young Park
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jie Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Carla Slebodnik
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States
| | - Peggy J Brodie
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States
| | - Leah C Blasiak
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, MD 21201, United States
| | - Russel Hill
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland, MD 21201, United States
| | - Karen TenDyke
- Eisai Inc., 4 Corporate Drive, Andover, MA 01810, United States
| | - Yongchun Shen
- Eisai Inc., 4 Corporate Drive, Andover, MA 01810, United States
| | - Maria B Cassera
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, M/C 0308, Virginia Tech, Blacksburg, VA 24061, United States
| | - Felicite Rejo
- Centre National de Recherches sur l'environnement, B.P. 1739, Antananarivo 101, Madagascar
| | - David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, M/C 0212, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
35
|
Gaudêncio SP, Pereira F. Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 2015; 32:779-810. [PMID: 25850681 DOI: 10.1039/c4np00134f] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: 1993-2014 (July)To alleviate the dereplication holdup, which is a major bottleneck in natural products discovery, scientists have been conducting their research efforts to add tools to their "bag of tricks" aiming to achieve faster, more accurate and efficient ways to accelerate the pace of the drug discovery process. Consequently dereplication has become a hot topic presenting a huge publication boom since 2012, blending multidisciplinary fields in new ways that provide important conceptual and/or methodological advances, opening up pioneering research prospects in this field.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | |
Collapse
|
36
|
|
37
|
Gill KA, Berrué F, Arens JC, Carr G, Kerr RG. Cystargolides, 20S Proteasome Inhibitors Isolated from Kitasatospora cystarginea. JOURNAL OF NATURAL PRODUCTS 2015; 78:822-826. [PMID: 25769015 DOI: 10.1021/np501060k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two novel β-lactone-containing natural products, cystargolides A (1) and B (2), were isolated from the actinomycete Kitasatospora cystarginea. The production of these two natural products was highlighted using a methodology associating liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis and the statistical analysis tool principal component analysis (PCA). Their structures were elucidated by interpretation of NMR experiments and tandem mass spectrometry. The absolute configurations of the amino acid residues were determined using Marfey's method, and the relative configurations of the β-lactone substituents were determined on the basis of the vicinal (3)J(HH) coupling value. Due to the presence of the β-lactone, 1 and 2 were evaluated for their ability to inhibit the human 20S proteasome. 1 and 2 both inhibited the 20S proteasome in vitro with IC50 values of 0.35 and 0.93 μM, respectively.
Collapse
Affiliation(s)
- Krista A Gill
- †Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Fabrice Berrué
- †Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- ‡Nautilus Biosciences Canada Inc., DRC 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Jennifer C Arens
- §Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Gavin Carr
- ‡Nautilus Biosciences Canada Inc., DRC 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Russell G Kerr
- †Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- ‡Nautilus Biosciences Canada Inc., DRC 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
- §Department of Biomedical Sciences, Atlantic Veterinary College, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| |
Collapse
|
38
|
Kim SH, Shin Y, Lee SK, Shin J, Oh DC. Salternamide E from a Saltern-derived Marine ActinomyceteStreptomycessp. ACTA ACUST UNITED AC 2015. [DOI: 10.20307/nps.2015.21.4.273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seong-Hwan Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Yoonho Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
39
|
Duncan KR, Haltli B, Gill KA, Correa H, Berrué F, Kerr RG. Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada. J Ind Microbiol Biotechnol 2014; 42:57-72. [PMID: 25371290 DOI: 10.1007/s10295-014-1529-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
Marine sediments from Newfoundland, Canada were explored for biotechnologically promising Actinobacteria using culture-independent and culture-dependent approaches. Culture-independent pyrosequencing analyses uncovered significant actinobacterial diversity (H'-2.45 to 3.76), although the taxonomic diversity of biotechnologically important actinomycetes could not be fully elucidated due to limited sampling depth. Assessment of culturable actinomycete diversity resulted in the isolation of 360 actinomycetes representing 59 operational taxonomic units, the majority of which (94 %) were Streptomyces. The biotechnological potential of actinomycetes from NL sediments was assessed by bioactivity and metabolomics-based screening of 32 representative isolates. Bioactivity was exhibited by 41 % of isolates, while 11 % exhibited unique chemical signatures in metabolomics screening. Chemical analysis of two isolates resulted in the isolation of the cytotoxic metabolite 1-isopentadecanoyl-3β-D-glucopyranosyl-X-glycerol from Actinoalloteichus sp. 2L868 and sungsanpin from Streptomyces sp. 8LB7. These results demonstrate the potential for the discovery of novel bioactive metabolites from actinomycetes isolated from Atlantic Canadian marine sediments.
Collapse
Affiliation(s)
- K R Duncan
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Gill KA, Berrué F, Arens JC, Kerr RG. Isolation and structure elucidation of cystargamide, a lipopeptide from Kitasatospora cystarginea. JOURNAL OF NATURAL PRODUCTS 2014; 77:1372-1376. [PMID: 24927492 DOI: 10.1021/np500122s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new lipopeptide, cystargamide (1) was isolated from the fermentation broth of the actinomycete Kitasatospora cystarginea. The bacterial strain was selected from a set of 12 Kitasatospora spp. using a secondary metabolomics approach combining liquid chromatography/high-resolution mass spectrometry (LC-HRMS) with principal component analysis (PCA). Cystargamide (1) was purified by reversed-phase HPLC, and the structure elucidation was achieved by interpreting mass spectrometry and NMR data. Cystargamide (1) contains rare structural features including a 5-hydroxy tryptophan residue and a 2,3-epoxydecanoyl fatty acid group.
Collapse
Affiliation(s)
- Krista A Gill
- Department of Chemistry, University of Prince Edward Island , 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | | | | | | |
Collapse
|
41
|
Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 2014; 12:3516-59. [PMID: 24918453 PMCID: PMC4071589 DOI: 10.3390/md12063516] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Abstract
Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.
Collapse
|
42
|
Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 2014; 12:2771-89. [PMID: 24824024 PMCID: PMC4052315 DOI: 10.3390/md12052771] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 02/01/2023] Open
Abstract
The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| | - Chen Yang
- Division of Chemical & Life Sciences and Engineering and Division of Applied Mathematics and Computer Science, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Hannes Horn
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| | - Dina Hajjar
- Division of Chemical & Life Sciences and Engineering and Division of Applied Mathematics and Computer Science, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Timothy Ravasi
- Division of Chemical & Life Sciences and Engineering and Division of Applied Mathematics and Computer Science, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg D-97082, Germany.
| |
Collapse
|