1
|
Ye L, Yang W, Yang R, Wu Y, Pang Z, Wang X, Huang K, Luo H, Zhang J, Zheng C. Portable purge and trap-microplasma optical emission spectrometric device for field detection of iodine in water. Talanta 2024; 272:125833. [PMID: 38430867 DOI: 10.1016/j.talanta.2024.125833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Iodine is essential for human growth and can enter the body through food, water, and air. Analyzing its presence in the environment is crucial for ensuring healthy human development. However, current large-scale instruments have limitations in the field analysis of iodine. Herein, a miniaturized purge and trap point discharge microplasma optical emission spectrometric (P&T-μPD-OES) device was developed for the field analysis of iodine in water. Volatile iodine molecules were produced from total inorganic iodine (TII) through a basic redox reaction under acidic conditions, then the purge and trap module effectively separated and preconcentrated iodine molecules. The iodine molecules were subsequently atomized and excited by the integrated point discharge microplasma and an iodine atomic emission line at 206.24 nm was monitored by the spectrometer. Under optimal conditions, this proposed method had a detection limit of 16.2 μg L-1 for iodine and a precision better than 4.8%. Besides, the accuracy of the portable device was validated by successful analysis of surface and groundwater samples and a comparison of the mass spectrometry method. This proposed portable, low-power device is expected to support rapid access to iodine levels and distribution in water.
Collapse
Affiliation(s)
- Liqing Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenhui Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuke Wu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhengqin Pang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, 541004, China.
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
2
|
Coupling of chemical vapor generation with atmospheric pressure glow discharge optical emission spectrometry generated in contact with flowing liquid electrodes for determination of Br in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry. Anal Chim Acta 2021; 1147:211-239. [DOI: 10.1016/j.aca.2020.11.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022]
|
4
|
Kim SH, Woo HC, Kim MH. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms. Anal Chim Acta 2020; 1131:80-89. [PMID: 32928482 DOI: 10.1016/j.aca.2020.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Sharp-tipped anisotropic silver (Ag) nanostructures are attracting increasing attention because of their unusual optical properties. However, the sharp tips make such nanostructures thermodynamically unstable; thus, they have been considered unsuitable for use in colorimetric sensing because of their tendency to aggregate or transform in a solution state. In the present study, a colorimetric sensing platform for detecting bromide (Br-) in an aqueous medium was developed. The platform is based on the localized surface plasmon resonance (LSPR) properties of Ag nanoprisms with sharp tips. The key to using such Ag nanocrystals with extreme anisotropic structures is to adopt a solid-phase sensing platform. A Ag-nanoprism-embedded tough hydrogel with interpenetrating polymer networks was synthesized via aqueous-phase polymerization and crosslinking processes. The Ag nanoprisms immobilized inside the hydrogel were stable and did not exhibit aggregation or degradation over time; specifically, when the hydrogel was dried, the nanoprisms retained their inherent LSPR properties for an extended period. By taking advantage of the rapid and spontaneous morphological transformation of Ag nanoprisms inside the hybrid hydrogel exposed to Br- and the corresponding changes in their LSPR properties, we designed a plasmonic sensing platform for the sensitive and selective detection of Br- in an aqueous medium. The proposed colorimetric sensing platform was found to exhibit a wide sensing range and high selectivity, with a low limit of detection (LOD) of 10 μM, and offers substantial advantages over previously developed systems; specifically, it is portable, eco-friendly, safe to use and handle, stable for extended periods, and enables naked-eye detection. We believe that the as-proposed sensing platform can be used as a point-of-care analytical tool for detecting Br- in a broad range of samples.
Collapse
Affiliation(s)
- Sang Heon Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
5
|
Phoonsawat K, Dungchai W. Highly sensitive, selective and naked-eye detection of bromide and bromate using distance-based paper analytical device. Talanta 2020; 221:121590. [PMID: 33076125 DOI: 10.1016/j.talanta.2020.121590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Bromine (Br) can usually be found as a bromide (Br‾) form contained in drinking water. Bromate (BrO3‾) formation often occurred during the ozonation process in the presence of Br‾. BrO3‾ is classified as a potential human carcinogen, so both the Br‾ and BrO3‾ concentrations must be strictly controlled before and after an ozone-based treatment procedure, respectively. This work reports on distance-based paper analytical devices (dPADs) that have been modified with silver hexagonal nanoprisms (AgNPrs) for highly sensitive and selective determination of both Br‾ and BrO3‾. The measurement of BrO3‾ is based upon its conversion to bromine vapor (Br2) when gauged with a paper-based headspace extractor (PAD-HS) that is coupled with dPADs (PAD-HS-dPADs). For Br‾ analysis, O2 plays an important role in the change from Br‾ to Br2 within an acid media. Br2 changes rapidly in water to give us HBrO which is a strong oxidizing agent of AgNPrs. Then, the oxidative reaction of the AgNPrs (pink color) within the presence of Br‾ and BrO3‾ establishes both silver bromide (AgBr) and the silver nanosphere (AgNPs, yellow color), which can then be easily observed as a change of a pink color band to a yellow color band by the naked eye. Quantification of Br‾ and BrO3‾ is then achieved by measuring the length of the yellow color band. Under the optimal conditions, the calibration curve will be linear in the range of 25 μg L-1 to 2 mg L-1, and from 0.5 to 50 μg L-1 for Br‾ and BrO3‾, respectively. The naked-eye detection limits were found to be 10 and 0.5 μg L-1 for Br‾ and BrO3‾, respectively. The proposed dPADs for the Br‾ and BrO3‾ detection exhibited an exceptional sensor performance combined with a low detection limit. They also have the benefits of ease of use, an instrument-free convenience, coupled with portability and a low-cost efficiency. Consequently, our sensing device should be applied to the low-level detection of Br‾ and BrO3‾ in real samples, including drinking water, rice, and flour.
Collapse
Affiliation(s)
- Kamonchanok Phoonsawat
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, 10140, Thailand
| | - Wijitar Dungchai
- Applied Science & Engineering for Social Solution Unit, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, Thailand.
| |
Collapse
|
6
|
Miniaturized dielectric barrier discharge-molecular emission spectrometer for determination of total sulfur dioxide in food. Food Chem 2020; 317:126437. [DOI: 10.1016/j.foodchem.2020.126437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/25/2019] [Accepted: 02/17/2020] [Indexed: 01/31/2023]
|
7
|
Peng X, Wang Z. Ultrasensitive Determination of Selenium and Arsenic by Modified Helium Atmospheric Pressure Glow Discharge Optical Emission Spectrometry Coupled with Hydride Generation. Anal Chem 2019; 91:10073-10080. [DOI: 10.1021/acs.analchem.9b02006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoxu Peng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Pohl P, Greda K, Dzimitrowicz A, Welna M, Szymczycha-Madeja A, Lesniewicz A, Jamroz P. Cold atmospheric plasma-induced chemical vapor generation in trace element analysis by spectrometric methods. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Li M, Huang S, Xu K, Jiang X, Hou X. Miniaturized point discharge-radical optical emission spectrometer: A multichannel optical detector for discriminant analysis of volatile organic sulfur compounds. Talanta 2018; 188:378-384. [PMID: 30029391 DOI: 10.1016/j.talanta.2018.05.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
In this work, we proposed a miniaturized point discharge-radical optical emission spectrometer (PD-RES) as a multichannel optical detector for discriminant analysis of various volatile organic sulfur compounds (VOSCs). Under appropriate experimental conditions, the unique molecular emission of CS radical in the vicinity of 257.6 nm was recorded, as well as the atomic emission lines of C at 193.1 nm and 247.8 nm, the molecular emission of C2 radical around 231.5 nm and CN radical nearby 384.8 nm. They were utilized as five optical channels for precise qualification and discrimination. Linear discriminant analysis (LDA) and principal component analysis (PCA) further demonstrated the robustness of this detector for discriminant analysis: 95 unknown samples from ten typical VOSCs were classified with accuracy of 98.9%. This proposed detector was further successfully applied to the discrimination of different concentrations of CS2 in air samples and two types of isomers (functional group isomer and carbon-chain isomer).
Collapse
Affiliation(s)
- Mengtian Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shixu Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kailai Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
10
|
Cai Y, Yu YL, Wang JH. Alternating-Current-Driven Microplasma for Multielement Excitation and Determination by Optical-Emission Spectrometry. Anal Chem 2018; 90:10607-10613. [PMID: 30070828 DOI: 10.1021/acs.analchem.8b02904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microplasma optical-emission spectrometry (OES) is a promising technique for developing portable analytical instrumentations for real-time and on-site measurement of trace elemental species. However, its analytical performance is far from satisfactory for multielement analysis. Herein, a miniature OES system is developed for simultaneous multielement analysis with alternating-current-driven microplasma generated on the nozzle of a pneumatic micronebulizer as the excitation source. Because of the strong excitation capability of the microplasma and its sufficient contact with solution, a series of elements, including Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, and Zn, is directly excited in the spray with solution nebulization at a flow rate of 8 μL s-1. The characteristic optical emissions are measured by a charge-coupled-device (CCD) spectrometer. In addition, hydride generation is compatible with the present system, which makes it feasible for the simultaneous excitation of hydrides of As, Ge, Hg, Sb, and Sn by reaction with 0.8% (m/v) NaBH4. The microplasma-OES system exhibits a powerful capability for multielement analysis with favorable limits of detection for the mentioned elements.
Collapse
Affiliation(s)
- Yi Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
11
|
Burhenn S, Kratzer J, Svoboda M, Klute FD, Michels A, Veža D, Franzke J. Spatially and Temporally Resolved Detection of Arsenic in a Capillary Dielectric Barrier Discharge by Hydride Generation High-Resolved Optical Emission Spectrometry. Anal Chem 2018; 90:3424-3429. [PMID: 29457722 DOI: 10.1021/acs.analchem.7b05072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new method for arsenic detection by optical emission spectrometry (OES) is presented. Arsine (AsH3) is generated from liquid solutions by means of hydride generation (HG) and introduced into a capillary dielectric barrier discharge (DBD) where it is atomized and excited. A great challenge in OES is the reduction of the recorded background signal, because it negatively affects the limit of detection (LOD). In conventional DBD/OES methods, the signal intensity of the line of interest, in this case arsenic, is integrated over a long time scale. However, due to the pulsed character of the plasma, the plasma on-time is only a small fraction of the integration time. Therefore, a high amount of noise is added to the actual signal in each discharge cycle. To circumvent this, in the present study the emitted light from the DBD is collected by a fast gated iCCD camera, which is mounted on a modified monochromator. The experimental arrangement enables the recording of the emission signal of arsenic in the form of a monochromatic 2D-resolved picture. The temporal resolution of the iCCD camera in the nanosecond range provides the information at which point in time and how long arsenic is excited in the discharge. With use of this knowledge, it is possible to integrate only the arsenic emission by temporally isolating the signal from the background. With the presented method, the LOD for arsenic could be determined to 93 pg mL-1 with a calibration curve linear over 4 orders of magnitude. As a consequence, the developed experimental approach has a potential for both mechanistic studies of arsine atomization and excitation in DBD plasmas as well as routine applications, in which arsenic determination at ultratrace levels is required.
Collapse
Affiliation(s)
- Sebastian Burhenn
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V. , Bunsen-Kirchhoff-Str. 11 , 44139 Dortmund , Germany
| | - Jan Kratzer
- Institute of Analytical Chemistry , Czech Academy of Sciences , Veveří 97 , 60200 Brno , Czech Republic
| | - Milan Svoboda
- Institute of Analytical Chemistry , Czech Academy of Sciences , Veveří 97 , 60200 Brno , Czech Republic
| | - Felix David Klute
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V. , Bunsen-Kirchhoff-Str. 11 , 44139 Dortmund , Germany
| | - Antje Michels
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V. , Bunsen-Kirchhoff-Str. 11 , 44139 Dortmund , Germany
| | - Damir Veža
- Department of Physics, Faculty of Science , University of Zagreb , Bijenicka 32 , 10000 Zagreb , Croatia
| | - Joachim Franzke
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V. , Bunsen-Kirchhoff-Str. 11 , 44139 Dortmund , Germany
| |
Collapse
|
12
|
Cai Y, Gao XG, Ji ZN, Yu YL, Wang JH. Nonthermal optical emission spectrometry for simultaneous and direct determination of zinc, cadmium and mercury in spray. Analyst 2018; 143:930-935. [DOI: 10.1039/c7an01633f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A nonthermal optical emission spectrometry is developed for the simultaneous and direct determination of zinc, cadmium and mercury in spray.
Collapse
Affiliation(s)
- Yi Cai
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Xin-Gang Gao
- Water Quality Technology Center
- Qingdao Jiaming Measurement and Control Technology Co
- Ltd
- Qingdao 266000
- China
| | - Zhi-Na Ji
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Yong-Liang Yu
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang 110819
| |
Collapse
|
13
|
Yang C, He D, Zhu Z, Peng H, Liu Z, Wen G, Bai J, Zheng H, Hu S, Wang Y. Battery-Operated Atomic Emission Analyzer for Waterborne Arsenic Based on Atmospheric Pressure Glow Discharge Excitation Source. Anal Chem 2017; 89:3694-3701. [DOI: 10.1021/acs.analchem.6b05158] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Yang
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Dong He
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Zhenli Zhu
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Huan Peng
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Zhifu Liu
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Guojun Wen
- School
of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, China, 430074
| | - Jianghao Bai
- School
of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, China, 430074
| | - Hongtao Zheng
- Faculty
of Material Science and Chemistry, China University of Geosciences, Wuhan, China, 430074
| | - Shenghong Hu
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
| | - Yanxin Wang
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Earth Sciences, China University of Geosciences, Wuhan, China, 430074
- State
Key Laboratory of Biogeology and Environmental Geology, School of
Environmental Studies, China University of Geosciences, Wuhan, China, 430074
| |
Collapse
|
14
|
Li N, Wu Z, Wang Y, Zhang J, Zhang X, Zhang H, Wu W, Gao J, Jiang J. Portable Dielectric Barrier Discharge-Atomic Emission Spectrometer. Anal Chem 2017; 89:2205-2210. [PMID: 28192915 DOI: 10.1021/acs.analchem.6b03523] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This paper describes the first demonstration of a portable dielectric barrier discharge-atomic emission spectrometer (DBD-AES). The instrument primarily consists of a miniature electro-thermal vaporizer (ETV), DBD, and optical signal acquisition units. It weighs only 4.5 kg and is powered by a 24 V DC battery with a maximum power consumption of 37 W. The accompanying software can be operated on a laptop computer. A specially designed quartz tube integrates the ETV unit with the DBD chamber. The effects of experimental parameters were investigated. The limit of detection (LOD) for mercury was 0.4 μg L-1 (1.2 pg) with a sampling volume of 3 μL. The instrument is applicable for multielement analysis, and the LODs ranged from 0.16 to 11.65 μg L-1 for Zn, Pb, Ag, Cd, Au, Cu, Mn, Fe, Cr, and As. The instrument was also validated by in-field analysis of seawater samples. The experimental results demonstrated the sensitivity, reliability, and practicality of the instrument.
Collapse
Affiliation(s)
| | - Zhongchen Wu
- School of Space Science and Physics, Shandong University at Weihai , Weihai, 264209 People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Klute FD, Michels A, Schütz A, Vadla C, Horvatic V, Franzke J. Capillary Dielectric Barrier Discharge: Transition from Soft Ionization to Dissociative Plasma. Anal Chem 2016; 88:4701-5. [DOI: 10.1021/acs.analchem.5b04605] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Felix David Klute
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Antje Michels
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Alexander Schütz
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Cedomil Vadla
- Institute of Physics, Bijenicka
46, 10000 Zagreb, Croatia
| | | | - Joachim Franzke
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| |
Collapse
|
16
|
Cai Y, Zhang YJ, Wu DF, Yu YL, Wang JH. Nonthermal Optical Emission Spectrometry: Direct Atomization and Excitation of Cadmium for Highly Sensitive Determination. Anal Chem 2016; 88:4192-5. [DOI: 10.1021/acs.analchem.6b00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yi Cai
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| | - Ya-Jie Zhang
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| | - De-Fu Wu
- Water Quality
Technology Center, Qingdao Jiaming Measurement and Control Technology
Co., LTD, Qingdao, Shandong 266000, China
| | - Yong-Liang Yu
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| | - Jian-Hua Wang
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| |
Collapse
|
17
|
Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath. Talanta 2016; 146:603-8. [DOI: 10.1016/j.talanta.2015.07.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/04/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022]
|
18
|
Cold excitation and determination of hydrogen sulfide by dielectric barrier discharge molecular emission spectrometry. Talanta 2015; 144:734-9. [DOI: 10.1016/j.talanta.2015.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
|
19
|
Cai Y, Li SH, Dou S, Yu YL, Wang JH. Metal Carbonyl Vapor Generation Coupled with Dielectric Barrier Discharge To Avoid Plasma Quench for Optical Emission Spectrometry. Anal Chem 2014; 87:1366-72. [DOI: 10.1021/ac5042457] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Shao-Hua Li
- Hebei First Environmental
Protection Technology Co., LTD, Shijiazhuang 050035, China
| | | | | | - Jian-Hua Wang
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|