1
|
Molenaar SRA, Mommers JHM, Stoll DR, Ngxangxa S, de Villiers AJ, Schoenmakers PJ, Pirok BWJ. Algorithm for tracking peaks amongst numerous datasets in comprehensive two-dimensional chromatography to enhance data analysis and interpretation. J Chromatogr A 2023; 1705:464223. [PMID: 37487299 DOI: 10.1016/j.chroma.2023.464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Analytical data processing often requires the comparison of data, i.e. finding similarities and differences within separations. In this context, a peak-tracking algorithm was developed to compare multiple datasets in one-dimensional (1D) and two-dimensional (2D) chromatography. Two application strategies were investigated: i) data processing where all chromatograms are produced in one sequence and processed simultaneously, and ii) method optimization where chromatograms are produced and processed cumulatively. The first strategy was tested on data from comprehensive 2D liquid chromatography and comprehensive 2D gas chromatography separations of academic and industrial samples of varying compound classes (monoclonal-antibody digest, wine volatiles, polymer granulate headspace, and mayonnaise). Peaks were tracked in up to 29 chromatograms at once, but this could be upscaled when necessary. However, the peak-tracking algorithm performed less accurate for trace analytes, since, peaks that are difficult to detect are also difficult to track. The second strategy was tested with 1D liquid chromatography separations, that were optimized using automated method-development. The strategy for method optimization was quicker to detect peaks that were still poorly separated in earlier chromatograms compared to assigning a target chromatogram, to which all other chromatograms are compared. Rendering it a useful tool for automated method optimization.
Collapse
Affiliation(s)
- Stef R A Molenaar
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands.
| | | | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, United States
| | - Sithandile Ngxangxa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André J de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Peter J Schoenmakers
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| |
Collapse
|
2
|
Bos TS, Knol WC, Molenaar SR, Niezen LE, Schoenmakers PJ, Somsen GW, Pirok BW. Recent applications of chemometrics in one- and two-dimensional chromatography. J Sep Sci 2020; 43:1678-1727. [PMID: 32096604 PMCID: PMC7317490 DOI: 10.1002/jssc.202000011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/28/2022]
Abstract
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high-resolution mass spectrometry, causes an urgent need for highly efficient data-analysis and optimization strategies. This is especially true for comprehensive two-dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre-)processing and analyzing data arising from one- and two-dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.
Collapse
Affiliation(s)
- Tijmen S. Bos
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Wouter C. Knol
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Stef R.A. Molenaar
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Leon E. Niezen
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Peter J. Schoenmakers
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical ChemistryAmsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| | - Bob W.J. Pirok
- Analytical Chemistry Groupvan ’t Hoff Institute for Molecular Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
- Centre for Analytical Sciences Amsterdam (CASA)AmsterdamThe Netherlands
| |
Collapse
|
3
|
An automated system for predicting detection limit and precision profile from a chromatogram. J Chromatogr A 2020; 1612:460644. [PMID: 31676091 DOI: 10.1016/j.chroma.2019.460644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/13/2019] [Accepted: 10/19/2019] [Indexed: 11/22/2022]
Abstract
This paper presents a basic model of an automated system for predicting the detection limit and precision profile (plot of relative standard deviation (RSD) of measurements against concentration) in chromatography. The fundamental assumption is that the major source of response errors at low sample concentrations is background noise and at high concentrations, it is the volumes injected into an HPLC system by a sample injector. The noise is approximated by the mixed random processes of the first order autoregressive process AR(1) and white noise. The research procedures are: (1) the description of the standard deviation (SD) of measurements in terms of the parameters of the mixed random processes; (2) the algorithm for the parameter estimation of the mixed processes from actual background noise; (3) the mathematical distinction between noise and signal in a chromatogram. When compounds are chromatographically separated, each obtained signal is given the detection limit and precision profile on laboratory-made software. A file of a chromatogram is the only requirement for the theoretical prediction of measurement uncertainty and therefore the repeated measurements of real samples can be dispensed with. The theoretically predicted RSDs are verified by comparing them with the statistical RSDs obtained by repeated measurements. Signal shapes on noise are illustrated at the detection limit and quantitation limit, the signal-to-noise ratios of which are close to the widely adopted values, 3 and 10, respectively.
Collapse
|
4
|
Sun L, Gao J, Wang M, Zhang H, Liu Y, Ren X, Deng Y. Comprehensive evaluation of chemical stability of Xuebijing injection based on multiwavelength chromatographic fingerprints and multivariate chemometric techniques. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1350864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Gao
- School of Chemistry, Nankai University, Tianjin, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Adutwum LA, Abel RJ, Harynuk J. Total Ion Spectra versus Segmented Total Ion Spectra as Preprocessing Tools for Gas Chromatography - Mass Spectrometry Data. J Forensic Sci 2017; 63:1059-1068. [PMID: 29023723 DOI: 10.1111/1556-4029.13657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 12/01/2022]
Abstract
Alignment of fire debris data from GC-MS for chemometric analysis is challenged by highly variable, uncontrolled sample and matrix composition. The total ion spectrum (TIS) obviates the need for alignment but loses all separation information. We introduce the segmented total ion spectrum (STIS), which retains the advantages of TIS while retaining some retention information. We compare the performance of STIS with TIS for the classification of casework fire debris samples. TIS and STIS achieve good model prediction accuracies of 96% and 98%, respectively. Baseline removal improved model prediction accuracies for both TIS and STIS to 97% and 99%, respectively. The importance of maintaining some chromatographic information to aid in deciphering the underlying chemistry of the results and reasons for false positive/negative results was also examined.
Collapse
Affiliation(s)
- Lawrence A Adutwum
- Department of Chemistry, Univeristy of Alberta, Edmonton, Alberta, Canada
| | - Robin J Abel
- Department of Chemistry, Univeristy of Alberta, Edmonton, Alberta, Canada
| | - James Harynuk
- Department of Chemistry, Univeristy of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
|
7
|
Fu HY, Guo JW, Yu YJ, Li HD, Cui HP, Liu PP, Wang B, Wang S, Lu P. A simple multi-scale Gaussian smoothing-based strategy for automatic chromatographic peak extraction. J Chromatogr A 2016; 1452:1-9. [PMID: 27207578 DOI: 10.1016/j.chroma.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022]
Abstract
Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method.
Collapse
Affiliation(s)
- Hai-Yan Fu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jun-Wei Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yong-Jie Yu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Hui Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| | - He-Dong Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hua-Peng Cui
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ping-Ping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bing Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Sheng Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Peng Lu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Yi L, Dong N, Yun Y, Deng B, Ren D, Liu S, Liang Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal Chim Acta 2016; 914:17-34. [PMID: 26965324 DOI: 10.1016/j.aca.2016.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/03/2023]
Abstract
This review focuses on recent and potential advances in chemometric methods in relation to data processing in metabolomics, especially for data generated from mass spectrometric techniques. Metabolomics is gradually being regarded a valuable and promising biotechnology rather than an ambitious advancement. Herein, we outline significant developments in metabolomics, especially in the combination with modern chemical analysis techniques, and dedicated statistical, and chemometric data analytical strategies. Advanced skills in the preprocessing of raw data, identification of metabolites, variable selection, and modeling are illustrated. We believe that insights from these developments will help narrow the gap between the original dataset and current biological knowledge. We also discuss the limitations and perspectives of extracting information from high-throughput datasets.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Baichuan Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dabing Ren
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
Lopatka M, Barcaru A, Sjerps MJ, Vivó-Truyols G. Leveraging probabilistic peak detection to estimate baseline drift in complex chromatographic samples. J Chromatogr A 2016; 1431:122-130. [DOI: 10.1016/j.chroma.2015.12.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 01/13/2023]
|
10
|
Lytle FE, Julian RK. Automatic Processing of Chromatograms in a High-Throughput Environment. Clin Chem 2015; 62:144-53. [PMID: 26589547 DOI: 10.1373/clinchem.2015.238816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/03/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND A major challenge in high-throughput clinical and toxicology laboratories is the reliable processing of chromatographic data. In particular, the identification, location, and quantification of analyte peaks needs to be accomplished with minimal human supervision. Data processing should have a large degree of self-optimization to reduce or eliminate the need for manual adjustment of processing parameters. Ultimately, the algorithms should be able to provide a simple quality metric to the batch reviewer concerning confidence about analyte peak parameters. CONTENT In this review we cover the basic conceptual and mathematical underpinnings of peak detection necessary to understand published algorithms suitable for a high-throughput environment. We do not discuss every approach appearing in the literature. Instead, we focus on the most common approaches, with sufficient detail that the reader will be able to understand alternative methods better suited to their own laboratory environment. In particular it will emphasize robust algorithms that perform well in the presence of substantial noise and nonlinear baselines. SUMMARY The advent of fast computers with 64-bit architecture and powerful, free statistical software has made practical the use of advanced numeric methods. Proper choice of modern data processing methodology also facilitates development of algorithms that can provide users with sufficient information to support QC strategies including review by exception.
Collapse
|
11
|
Yi L, Dong N, Yun Y, Deng B, Liu S, Zhang Y, Liang Y. WITHDRAWN: Recent advances in chemometric methods for plant metabolomics: A review. Biotechnol Adv 2014:S0734-9750(14)00183-9. [PMID: 25461504 DOI: 10.1016/j.biotechadv.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, China.
| | - Naiping Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong, China
| | - Yonghuan Yun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Baichuan Deng
- Department of Chemistry, University of Bergen, Bergen N-5007, Norway
| | - Shao Liu
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Comparison and optimization of different peak integration methods to determine the variance of unretained and extra-column peaks. J Chromatogr A 2014; 1364:140-50. [DOI: 10.1016/j.chroma.2014.08.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022]
|
13
|
A universal comparison study of chromatographic response functions. J Chromatogr A 2014; 1361:178-90. [DOI: 10.1016/j.chroma.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/22/2022]
|