1
|
Wang Y, Duan H, Yalikun Y, Cheng S, Li M. Chronoamperometric interrogation of an electrochemical aptamer-based sensor with tetrahedral DNA nanostructure pendulums for continuous biomarker measurements. Anal Chim Acta 2024; 1305:342587. [PMID: 38677841 DOI: 10.1016/j.aca.2024.342587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Tetrahedral DNA nanostructure (TDN) is highly promising in developing electrochemical aptamer-based (E-AB) sensors for biomolecular detection, owing to its inherit programmability, spatial orientation and structural robustness. However, current interrogation strategies applied for TDN-based E-AB sensors, including enzyme-based amperometry, voltammetry, and electrochemical impedance spectroscopy, either require complicated probe design or suffer from limited applicability or selectivity. In this study, a TDN pendulum-empowered E-AB sensor interrogated by chronoamperometry for reagent-free and continuous monitoring of a blood clotting enzyme, thrombin, was developed. TDN pendulums with extended aptamer sequences at three vertices were immobilized on a gold electrode via a thiolated double-stranded DNA (dsDNA) at the fourth vertex, and their motion is modulated by the bonding of target thrombin to aptamers. We observed a significantly amplified signalling output on our sensor based on the TDN pendulum compared to E-AB sensors modified with linear pendulums. Moreover, our sensor achieved highly selective and rapidly responsive measurement of thrombin in both PBS and artificial urine, with a wide dynamic range from 1 pM to 10 nM. This study shows chronoamperometry-enabled continuous biomarker monitoring on a sub-second timescale with a drift-free baseline, demonstrating a novel approach to accurately detect molecular dynamics in real time.
Collapse
Affiliation(s)
- Yizhou Wang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Salmasi Z, Rouhi N, Safarpour H, Zebardast N, Zare H. The Recent Progress in DNAzymes-Based Aptasensors for Thrombin Detection. Crit Rev Anal Chem 2022; 54:818-839. [PMID: 35867568 DOI: 10.1080/10408347.2022.2098671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thrombin (TB) is classified among human blood coagulation proteins with key functions in hemostasis of blood vessels, wound healing, atherosclerosis, tissue adhesion, etc. Moreover, TB is involved as the main enzyme in the conversion of the fibrinogen to fibrin. Given the importance of TB detection in the clinical area, the development of innovative methods can considerably improve TB detection. Newly, aptasensors or aptamer-based biosensors have received special attention for sensitive and facile TB detection. In addition, the aptamer/nanomaterial conjugates have presented new prospects in accurate TB detection as nanoaptasensors. DNA-based enzymes or DNAzymes, as new biocatalysts, have many advantages over protein enzymes and can be used in analytical tools. This article reviews a brief overview of significant progresses regarding the various types of DNAzymes-based aptasensors and nano aptasensors developed for thrombin detection. In the following, challenges and prospects of TB detection by DNAzymes-based aptasensors are discussed.
Collapse
Affiliation(s)
- Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadiyeh Rouhi
- Seafood Processing Department, Marine Science Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Hashem A, Hossain MAM, Marlinda AR, Mamun MA, Sagadevan S, Shahnavaz Z, Simarani K, Johan MR. Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit Rev Clin Lab Sci 2022. [PMID: 34851806 DOI: 10.1016/j.apsadv.2021.100064] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Clinical diagnostic tests should be quick, reliable, simple to perform, and affordable for diagnosis and treatment of diseases. In this regard, owing to their novel properties, biosensors have attracted the attention of scientists as well as end-users. They are efficient, stable, and relatively cheap. Biosensors have broad applications in medical diagnosis, including point-of-care (POC) monitoring, forensics, and biomedical research. The electrochemical nucleic acid (NA) biosensor, the latest invention in this field, combines the sensitivity of electroanalytical methods with the inherent bioselectivity of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The NA biosensor exploits the affinity of single-stranded DNA/RNA for its complementary strand and is used to detect complementary sequences of NA based on hybridization. After the NA component in the sensor detects the analyte, a catalytic reaction or binding event that generates an electrical signal in the transducer ensues. Since 2000, much progress has been made in this field, but there are still numerous challenges. This critical review describes the advances, challenges, and prospects of NA-based electrochemical biosensors for clinical diagnosis. It includes the basic principles, classification, sensing enhancement strategies, and applications of biosensors as well as their advantages, limitations, and future prospects, and thus it should be useful to academics as well as industry in the improvement and application of EC NA biosensors.
Collapse
Affiliation(s)
- Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Ab Rahman Marlinda
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Zohreh Shahnavaz
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Khanom Simarani
- Department of Microbiology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. BIOSENSORS 2022; 12:bios12040253. [PMID: 35448312 PMCID: PMC9025199 DOI: 10.3390/bios12040253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 05/06/2023]
Abstract
Thrombin plays a central role in hemostasis and its imbalances in coagulation can lead to various pathologies. It is of clinical significance to develop a fast and accurate method for the quantitative detection of thrombin. Electrochemical aptasensors have the capability of combining the specific selectivity from aptamers with the extraordinary sensitivity from electrochemical techniques and thus have attracted considerable attention for the trace-level detection of thrombin. Nanomaterials and nanostructures can further enhance the performance of thrombin aptasensors to achieve high sensitivity, selectivity, and antifouling functions. In highlighting these material merits and their impacts on sensor performance, this paper reviews the most recent advances in label-free electrochemical aptasensors for thrombin detection, with an emphasis on nanomaterials and nanostructures utilized in sensor design and fabrication. The performance, advantages, and limitations of those aptasensors are summarized and compared according to their material structures and compositions.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Lianxi Zheng
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
5
|
Shekari Z, Zare HR, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Mikrochim Acta 2019; 186:530. [PMID: 31302781 DOI: 10.1007/s00604-019-3572-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/02/2019] [Indexed: 01/22/2023]
Abstract
A sandwich-type electrochemical aptasensor has been constructed and applied for sensitive and selective detection of the carcinoembryonic antigen (CEA). The surface of a glassy carbon electrode (GCE) was first modified with nitrogen-doped graphene and then gold nanoparticles and graphene quantum dots electrodeposited on it to obtain an architecture of type GQD/AuNP/NG/GCE. In the next step, the CEA-binding aptamer was immobilized on the modified GCE. Hemin intercalates in the amino-modified hemin aptamer to form a hemin-G-quadruplex (hemin-G4) DNAzyme. The amino modified CEA aptamer II is connected to hemin-G4 by glutaraldehyde (GA) as a linker to produce CEAaptamerII/GA/hemin-G4 (=ApII/GA/DNAzyme). Through a sandwich mode, the ApII/GA/DNAzyme bioconjugates are captured on the modified GCE. Subsequently, the hemin-G4 acts as peroxidase-mimicking DNAzyme and rapidly catalyzes the electroreduction of hydrogen peroxide. The quantitative determination of CEA was achieved by differential pulse voltammetry, best at a working potential of around -0.27 V vs. Ag/AgCl. Under optimized conditions, the assay has a linear response in the 10.0 fg mL-1 to 200.0 ng mL-1 CEA concentration range and a lower detection limit of 3.2 fg mL-1. Graphical abstract Schematic presentation of a sandwich-type electrochemical aptasensor based on nitrogen doped graphene (NG), gold nanoparticles (AuNPs) and graphene quantum dots (GQDs) modified glassy carbon electrode, and the hemin-G4 DNAzyme for femtomolar detection of the carcinoembryonic antigen.
Collapse
Affiliation(s)
- Zahra Shekari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Ali Falahati
- Department of Biology, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| |
Collapse
|
6
|
Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications. J Nucleic Acids 2018; 2018:5307106. [PMID: 29666699 PMCID: PMC5831849 DOI: 10.1155/2018/5307106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/05/2017] [Indexed: 02/06/2023] Open
Abstract
Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited.
Collapse
|
7
|
Wu Y, Zou L, Lei S, Yu Q, Ye B. Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Biosens Bioelectron 2017. [PMID: 28622642 DOI: 10.1016/j.bios.2017.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we first conjugated a short peptide to thrombin binding aptamer (TBA) and bond hemin to the hybrid, effectively rendering hemin/G4-peptide more active over the original hemin/G4, so that a highly sensitive electrochemical thrombin (TB) aptasensor was developed based on it and PtNTs@rGO nanocomposite. It was the first report on the application of hemin/G4-peptide in electrochemical aptasensor. PtNTs@rGO with large surface area served as excellent nanocarrier for high loading of hemin/G4-peptide hybrids, resulting in the formation of hemin/G4-peptide-PtNTs@rGO bioconjugate as the secondary aptamer and further signal enhancement. The specific affinity of aptamer for target TB made the secondary aptamer go into the sensing interface, and then a noticeable current signal was obtained from hemin without additional redox mediators. Due to the collaborative electrocatalysis of hemin/G4-peptide and PtNTs toward H2O2, which was formed in situ during the process of hemin/G4-peptide-catalyzed oxidation of NADH with dissolved O2, the current intensity increased dramatically. Such an electrochemical aptasensing system could be used to detect TB with a linear range of 0.05 pM-60nM and very lower detection limit of 15fM. Notably, this method exhibited a higher sensitivity than that of many hemin/G4-based electrochemical strategies for TB detection due to the improvement of the catalytic activity of hemin/G4-peptide. The present works opened a new way for expanding the application of hemin/G4 in biological detection. With the mediator-free, proteinous enzyme-free yet high-sensitivity advantages, this electrochemical aptasensor held great promise for other biomarker detections in clinical diagnostics.
Collapse
Affiliation(s)
- Yongmei Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qian Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Wang X, Sun D, Tong Y, Zhong Y, Chen Z. A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2160-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
|
10
|
Zhou X, Xue S, Jing P, Xu W. A sensitive impedimetric platform biosensing protein: Insoluble precipitates based on the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrinin in HCR-assisted dsDNA. Biosens Bioelectron 2016; 86:656-663. [PMID: 27471156 DOI: 10.1016/j.bios.2016.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022]
Abstract
In this study, a sensitive biosensing interface for protein was reported based on nonconductive insoluble precipitates (IPs) by the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP), which was intercalated into formed double-strand DNA (dsDNA) scaffold triggered by hybridization chain reaction (HCR). In the proposed impedimetric aptasensor, carcinoembryonic antigen (CEA) and its aptamer were used as testing model. PtPd nanowires (PtPdNWs) with large surface area and superior conductivity were employed as nanocarriers to greatly immobilize biomolecules (e.g. CEA aptamers). Then, two DNA hairpins H1 and H2 were introduced to trigger HCR with the assistance of DNA initiator, resulting in the formation of a long dsDNA scaffold. Meanwhile, mimicking enzyme MnTMPyP molecules were embedded into the resultant dsDNA, in situ generating the complex MnTMPyP-dsDNA with peroxidase-like activity. Under the biocatalysis of MnTMPyP-dsDNA, 3,3-diaminobenzidine (DAB) was oxidized to form nonconductive IPs. As a result, the electron transfer between electrode interface and redox probe was vastly hindered, leading to the significant amplification of electrochemical impedimetric signal. So, greatly improved analytical performances of the proposed aptasensor were achieved with a detection limit as low as 0.030pgmL(-1). And the successful assay of CEA in human serum samples enabled the developed biosensing platform to have promising potential in bioanalysis.
Collapse
Affiliation(s)
- Xingxing Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Shuyan Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Pei Jing
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 PR China.
| |
Collapse
|
11
|
Ultrasensitive detection of superoxide anion released from living cells using a porous Pt–Pd decorated enzymatic sensor. Biosens Bioelectron 2016; 79:449-56. [DOI: 10.1016/j.bios.2015.12.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 11/17/2022]
|
12
|
Ocaña C, del Valle M. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin. Anal Chim Acta 2016; 912:117-24. [DOI: 10.1016/j.aca.2016.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
|
13
|
FUNABASHI H. Hemin/G-quadruplex Complex as a Signal Generator for Electrochemical Assays of Bioanalytes. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hisakage FUNABASHI
- Institute for Sustainable Sciences and Development, Hiroshima University
| |
Collapse
|
14
|
Wang M, Zhai S, Ye Z, He L, Peng D, Feng X, Yang Y, Fang S, Zhang H, Zhang Z. An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme. Dalton Trans 2015; 44:6473-9. [PMID: 25751032 DOI: 10.1039/c5dt00168d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A sensitive aptasensor based on a nanocomposite of hollow titanium dioxide nanoball, three-dimensional reduced graphene oxide, and polypyrrole (TiO2/3D-rGO/PPy) was developed for lysozyme detection. A lysozyme aptamer was easily immobilized onto the TiO2/3D-rGO/PPy nanocomposite matrix by assembling the aptamer onto graphene through simple π-stacking interactions and electrostatic interactions between PPy molecular chains and aptamer strands. In the presence of lysozyme, the aptamer on the adsorbent layer catches the target on the electrode interface, which generates a barrier for electrons and inhibits electron transfer, subsequently resulting in decreased electrochemically differential pulse voltammetric signals of a gold electrode modified with TiO2/3D-rGO/PPy. Using this strategy, a low limit of detection of 0.085 ng mL(-1) (5.5 pM) for detecting lysozyme was observed within the detection range of 0.1-50 ng mL(-1) (0.007-3.5 nM). The aptasensor also presents high specificity for lysozyme, which is unaffected by the coexistence of other proteins. Such an aptasensor opens a rapid, selective, and sensitive route to lysozyme detection. This finding indicates that the TiO2/3D-rGO/PPy nanocomposite could be used as an electrochemical biosensor for detecting proteins in the biomedical field.
Collapse
Affiliation(s)
- Minghua Wang
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing. Biosens Bioelectron 2015; 77:157-63. [PMID: 26406456 DOI: 10.1016/j.bios.2015.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/22/2015] [Accepted: 09/04/2015] [Indexed: 11/21/2022]
Abstract
A versatile label-free quadruple signal amplification biosensing platform for p53 gene (target DNA) detection was proposed. The chitosan-graphene (CS-GR) modified electrode with excellent electron transfer ability could provide a large specific surface for high levels of AuNPs-DNA attachment. The large amount of AuNPs could immobilize more capture probes and enhance the electrochemical signal with the excellent electrocatalytic activity. Furthermore, with the assist of N.BstNB I (the nicking endonuclease), target DNA could be reused and more G-quadruplex-hemin DNAzyme could be formed, allowing significant signal amplification in the presence of H2O2. Such strategy can enhance the oxidation-reduction reaction of adsorbed methylene blue (MB) and efficiently improve the sensitivity of the proposed biosensor. The morphologies of materials and the stepwise biosensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Differential pulse voltammetry (DPV) signals of MB provided quantitative measures of the concentrations of target DNA, with a linear calibration range of 1.0 × 10(-15)-1.0 × 10(-9)M and a detection limit of 3.0 × 10(-16)M. Moreover, the resulting biosensor also exhibited good specificity, acceptable reproducibility and stability, indicating that the present strategy was promising for broad potential application in clinic assay.
Collapse
|
16
|
Bao T, Wen W, Zhang X, Wang S. An exonuclease-assisted amplification electrochemical aptasensor of thrombin coupling "signal on/off" strategy. Anal Chim Acta 2014; 860:70-6. [PMID: 25682249 DOI: 10.1016/j.aca.2014.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 01/30/2023]
Abstract
In this work, a dual-signaling electrochemical aptasensor based on exonuclease-catalyzed target recycling was developed for thrombin detection. The proposed aptasensor coupled "signal-on" and "signal-off" strategies. As to the construction of the aptasensor, ferrocene (Fc) labeled thrombin binding aptamer (TBA) could perfectly hybridize with the methylene blue (MB) modified thiolated capture DNA to form double-stranded structure, hence emerged two different electrochemical signals. In the presence of thrombin, TBA could form a G-quadruplex structure with thrombin, leading to the dissociation of TBA from the duplex DNA and capture DNA formed hairpin structure. Exonuclease could selectively digest single-stranded TBA in G-quadruplex structure and released thrombin to realize target recycling. As a consequence, the electrochemical signal of MB enhanced significantly, which realized "signal on" strategy, meanwhile, the deoxidization peak current of Fc decreased distinctly, which realized "signal off" strategy. The employment of exonuclease and superposition of two signals significantly improved the sensitivity of the aptasensor. In this way, an aptasensor with high sensitivity, good stability and selectivity for quantitative detection of thrombin was constructed, which exhibited a good linear range from 5 pM to 50 nM with a detection limit of 0.9 pM (defined as S/N=3). In addition, this design strategy could be applied to the detection of other proteins and small molecules.
Collapse
Affiliation(s)
- Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
17
|
Bogomolova A, Aldissi M. Real-time and label-free analyte detection in a flow-through mode using immobilized fluorescent aptamer/quantum dots molecular switches. Biosens Bioelectron 2014; 66:290-6. [PMID: 25437366 DOI: 10.1016/j.bios.2014.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/23/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Inspired by the goal to create a biosensor with designer specificity for real-time detection of unlabeled analytes in a flow-through mode, we designed a miniature flow cell with interchangeable quartz window carrying immobilized aptamer/quantum dot molecular switches as a part of a portable fluorescent setup. The inner surface of the 1.5mm ID, 12µl flow cell quartz window has been modified with the aptamer sensing complexes containing highly-fluorescent quantum dots. The aptamer complexes were designed as molecular switches to undergo conformational change and release fluorescent label upon interaction with the flow of the analyte, causing fluorescence decrease. The specificity of the sensor was designed to address the light chain of Botulinum Neurotoxin A and Ricin Toxin A chain, which could be specifically and repeatedly detected in the flow of 60µl/min with sensitivity comparable to other real-time detection methods. The specifics of quantum dots use as fluorescent labels for continuous monitoring under constant UV illumination were outlined. The possibility for multispecific sensing was explored by testing of bi-specific sensor. This work shows the possibility of surface-bound aptamer sensing for flow-through analyte detection and provides a useful tool to perform surface fluorescent studies in real-time. The flexibility of the described design allows for sensor specificity change through altering the specificity of the aptamer. Future work should address response quantification. The described sensing approach can be adapted to a number of environmental or clinical targets.
Collapse
Affiliation(s)
- Anastasia Bogomolova
- Smart Polymers Research Corporation, 108 4th Street, Belleair Beach, FL 33786, USA.
| | - Matt Aldissi
- Smart Polymers Research Corporation, 108 4th Street, Belleair Beach, FL 33786, USA
| |
Collapse
|
18
|
Xu W, Yi H, Yuan Y, Jing P, Chai Y, Yuan R, Wilson GS. An electrochemical aptasensor for thrombin using synergetic catalysis of enzyme and porous Au@Pd core-shell nanostructures for signal amplification. Biosens Bioelectron 2014; 64:423-8. [PMID: 25280342 DOI: 10.1016/j.bios.2014.08.091] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/25/2014] [Accepted: 08/30/2014] [Indexed: 01/01/2023]
Abstract
In this work, a sensitive electrochemical aptasensor for thrombin (TB) based on synergetic catalysis of enzyme and porous Au@Pd core-shell nanostructure has been constructed. With the advantages of large surface area and outstanding catalytic performance, porous Au@Pd core-shell nanostructures were firstly employed as the nanocarrier for the immobilization of electroactive toluidine blue (Tb), hemin/G-quadruplex formed by intercalating hemin into the TB aptamer (TBA) and glucose oxidase (GOx). As a certain amount of glucose was added into the detection cell, GOx rapidly catalyzed the oxidation of glucose, coupling with the local generation of H2O2 in the presence of dissolved O2. Then, porous Au@Pd nanoparticles and hemin/G-quadruplex as the peroxidase mimics efficiently catalyzed the reduction of H2O2, amplifying the electrochemical signal and improving the sensitivity. Finally, a detection limit of 0.037pM for TB was achieved. The excellent performance of the aptasensor indicated its promising prospect as a valuable tool in simple and cost-effective TB detection in clinical application.
Collapse
Affiliation(s)
- Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Deparment of Chemistry, University of Kansas, Lawrence, KS, 66045, USA.
| | - Huayu Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Pei Jing
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - George S Wilson
- Deparment of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
19
|
Toh SY, Citartan M, Gopinath SCB, Tang TH. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 2014; 64:392-403. [PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023]
Abstract
The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
Collapse
Affiliation(s)
- Saw Yi Toh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Subash C B Gopinath
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia; Department of Oral Biology & Biomedical Sciences and OCRCC, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|