1
|
Pu D, Chen H, Fu W, Cui Y, Shu K. Combining E-ice-COLD-PCR and Pyrosequencing with Di-Base Addition (PDBA) Enables Sensitive Detection of Low-Abundance Mutations. Appl Biochem Biotechnol 2024; 196:4049-4066. [PMID: 37864708 DOI: 10.1007/s12010-023-04718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/23/2023]
Abstract
Detecting low-abundance mutations is of particular interest in the fields of biology and medical science. However, most currently available molecular assays have limited sensitivity for the detection of low-abundance mutations. Here, we established a platform for detecting low-level DNA mutations with high sensitivity and accuracy by combining enhanced-ice-COLD-PCR (E-ice-COLD-PCR) and pyrosequencing with di-base addition (PDBA). The PDBA assay was performed by selectively adding one di-base (AG, CT, AC, GT, AT, or GC) instead of one base (A, T, C, or G) into the reaction at a time during sequencing primer extension and thus enabling to increase the sequencing intensity. A specific E-ice-COLD-PCR/PDBA assay was developed for the detection of the most frequent BRAF V600E mutation to verify the feasibility of our method. E-ice-COLD-PCR/PDBA assay permitted the reliable detection of down to 0.007% of mutant alleles in a wild-type background. Furthermore, it required only a small amount of starting material (20 pg) to sensitively detect and identify low-abundance mutations, thus increasing the screening capabilities in limited DNA material. The E-ice-COLD-PCR/PDBA assay was applied in the current study to clinical formalin-fixed paraffin-embedded (FFPE) and plasma samples, and it enabled the detection of BRAF V600E mutations in samples that appeared as a wild type using PCR/conventional pyrosequencing (CP) and E-ice-COLD-PCR/CP. E-ice-COLD-PCR/PDBA assay is a rapid, cost-effective, and highly sensitive method that could improve the detection of low-abundance mutations in routine clinical use.
Collapse
Affiliation(s)
- Dan Pu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Huimin Chen
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| |
Collapse
|
2
|
Fei Z, Gupta N, Li M, Xiao P, Hu X. Toward highly effective loading of DNA in hydrogels for high-density and long-term information storage. SCIENCE ADVANCES 2023; 9:eadg9933. [PMID: 37163589 PMCID: PMC10171811 DOI: 10.1126/sciadv.adg9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Digital information, when converted into a DNA sequence, provides dense, stable, energy-efficient, and sustainable data storage. The most stable method for encapsulating DNA has been in an inorganic matrix of silica, iron oxide, or both, but are limited by low DNA uptake and complex recovery techniques. This study investigated a rationally designed thermally responsive functionally graded (TRFG) hydrogel as a simple and cost-effective method for storing DNA. The TRFG hydrogel shows high DNA uptake, long-term protection, and reusability due to nondestructive DNA extraction. The high loading capacity was achieved by directly absorbing DNA from the solution, which is then retained because of its interaction with a hyperbranched cationic polymer loaded into a negatively charged hydrogel matrix used as a support and because of its thermoresponsive nature, which allows DNA concentration within the hydrogel through multiple swelling/deswelling cycles. We were able to achieve a high DNA data density of 7.0 × 109 gigabytes per gram using a hydrogel-based system.
Collapse
Affiliation(s)
- Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nupur Gupta
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mengjie Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
3
|
Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of next-generation sequencing. Front Bioeng Biotechnol 2023; 11:982111. [PMID: 36741756 PMCID: PMC9895957 DOI: 10.3389/fbioe.2023.982111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Next-generation sequencing (NGS) is present in all fields of life science, which has greatly promoted the development of basic research while being gradually applied in clinical diagnosis. However, the cost and throughput advantages of next-generation sequencing are offset by large tradeoffs with respect to read length and accuracy. Specifically, its high error rate makes it extremely difficult to detect SNPs or low-abundance mutations, limiting its clinical applications, such as pharmacogenomics studies primarily based on SNP and early clinical diagnosis primarily based on low abundance mutations. Currently, Sanger sequencing is still considered to be the gold standard due to its high accuracy, so the results of next-generation sequencing require verification by Sanger sequencing in clinical practice. In order to maintain high quality next-generation sequencing data, a variety of improvements at the levels of template preparation, sequencing strategy and data processing have been developed. This study summarized the general procedures of next-generation sequencing platforms, highlighting the improvements involved in eliminating errors at each step. Furthermore, the challenges and future development of next-generation sequencing in clinical application was discussed.
Collapse
|
4
|
Cheng C, Fei Z, Xiao P, Huang H, Zhou G, Lu Z. Analysis of mutational genotyping using correctable decoding sequencing with superior specificity. Analyst 2023; 148:402-411. [PMID: 36537878 DOI: 10.1039/d2an01805e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to accurately identify SNPs or low-abundance mutations is important for early clinical diagnosis of diseases, but the existing high-throughput sequencing platforms are limited in terms of their accuracy. Here, we propose a correctable decoding sequencing strategy that may be used for high-throughput sequencing platforms. This strategy is based on adding a mixture of two types of mononucleotides, natural nucleotide and cyclic reversible termination (CRT), for cyclic sequencing. Using the synthetic characteristic of CRTs, about 75% of the calls are unambiguous for a single sequencing run, and the remaining ambiguous sequence can be accurately deduced by two parallel sequencing runs. We demonstrate the feasibility of this strategy, and its cycle efficiency can reach approximately 99.3%. This strategy is proved to be effective for correcting errors and identifying whether the sequencing information is correct or not. And its conservative theoretical error rate was determined to be 0.0009%, which is lower than that of Sanger sequencing. In addition, we establish that the information of only a single sequencing run can be used to detect samples with known mutation sites. We apply this strategy to accurately identify a mutation site in mitochondrial DNA from human cells.
Collapse
Affiliation(s)
- Chu Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Huan Huang
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
5
|
Bionic‐structure thermo‐responsive (best) hydrogels with controllable layer for high‐capacity DNA data storage. NANO SELECT 2022. [DOI: 10.1002/nano.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Cheng C, Xiao P. Evaluation of the correctable decoding sequencing as a new powerful strategy for DNA sequencing. Life Sci Alliance 2022; 5:5/8/e202101294. [PMID: 35422436 PMCID: PMC9012935 DOI: 10.26508/lsa.202101294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022] Open
Abstract
This article proposed the correctable decoding sequencing technology with conservative theoretical error rate of 0.0009%, and evaluated its robustness by simulation. This technology can provide a powerful new protocol for NGS platforms, enabling accurate identification of rare mutations in medicine. Next-generation sequencing (NGS) promises to revolutionize precision medicine, but the existing sequencing technologies are limited in accuracy. To overcome this limitation, we propose the correctable decoding sequencing strategy, which is a duplex sequencing protocol with conservative theoretical error rates of 0.0009%. This rate is lower than that for Sanger sequencing. Here, we simulate the sequencing reactions by the self-developed software, and find that this approach has great potential in NGS in terms of sequence decoding, reassembly, error correction, and sequencing accuracy. Besides, this approach can be compatible with most SBS-based sequencing platforms, and also has the ability to compensate for some of the shortcomings of NGS platforms, thereby broadening its application for researchers. Hopefully, it can provide a powerful new protocol that can be used as an alternative to the existing NGS platforms, enabling accurate identification of rare mutations in a variety of applications in biology and medicine.
Collapse
Affiliation(s)
- Chu Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Efficient identification of SNPs in pooled DNA samples using a dual mononucleotide addition-based sequencing method. Mol Genet Genomics 2017; 292:1069-1081. [PMID: 28612167 PMCID: PMC5594057 DOI: 10.1007/s00438-017-1332-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/02/2017] [Indexed: 11/18/2022]
Abstract
Identifying single nucleotide polymorphism (SNPs) from pooled samples is critical for many studies and applications. SNPs determined by next-generation sequencing results may suffer from errors in both base calling and read mapping. Taking advantage of dual mononucleotide addition-based pyrosequencing, we present Epds, a method to efficiently identify SNPs from pooled DNA samples. On the basis of only five patterns of non-synchronistic extensions between the wild and mutant sequences using dual mononucleotide addition-based pyrosequencing, we employed an enumerative algorithm to infer the mutant locus and estimate the proportion of mutant sequence. According to the profiles resulting from three runs with distinct dual mononucleotide additions, Epds could recover the mutant bases. Results showed that our method had a false-positive rate of less than 3%. Series of simulations revealed that Epds outperformed the current method (PSM) in many situations. Finally, experiments based on profiles produced by real sequencing proved that our method could be successfully applied for the identification of mutants from pooled samples. The software for implementing this method and the experimental data are available at http://bioinfo.seu.edu.cn/Epds.
Collapse
|
8
|
Pu D, Pan R, Liu W, Xiao P. Quantitative analysis of single-nucleotide polymorphisms by pyrosequencing with di-base addition. Electrophoresis 2017; 38:876-885. [PMID: 27957738 DOI: 10.1002/elps.201600430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023]
Abstract
We have developed and validated a novel method for quantitative detection of SNPs by using pyrosequencing with di-base addition (PDBA). Based on the principle that the signal intensity is proportional to the template concentration within a linear concentration range, linear formula (Y = AX + B) for each genotype is established, and the relationship between two genotypes of a single SNP can be resolved by corresponding linear formulas. Here, PDBA assays were developed to detect variants rs6717546 and rs4148324, and the linear formulas for each genotype of rs6717546 and rs4148324 were established. The method allowed to quantitatively determine each genotype and showed 100% accordant results against a panel of defined mixtures. A set of 24 template fragments containing variants rs6717546 or rs4148324 was tested to evaluate the method. Our results showed that allele frequency of each genotype was accurately quantified, with results comparable to those of conventional pyrosequencing. Furthermore, this method was capable of detecting alleles with frequencies as low as 3%, which was more sensitive than ∼5 to ∼7% level detected by conventional pyrosequencing. This method offers high sensitivity, reproducibility, and relatively low costs, and thus could provide a much-needed approach for quantitative analysis of SNPs in clinical samples.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China.,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, P. R. China
| | - Rongfang Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Wenbin Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
9
|
Pu D, Xiao P. A real-time decoding sequencing technology—new possibility for high throughput sequencing. RSC Adv 2017. [DOI: 10.1039/c7ra06202h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The challenges and corresponding solutions for a decoding sequencing to be compatible with high throughput sequencing (HTS) technologies are provided.
Collapse
Affiliation(s)
- Dan Pu
- School of Bioinformatics
- Chongqing University of Posts and Telecommunications
- Chongqing
- China
- State Key Laboratory of Bioelectronics
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
10
|
Pan R, Xiao P. Quantitative haplotyping of PCR products by nonsynchronous pyrosequencing with di-base addition. Anal Bioanal Chem 2016; 408:8263-8271. [PMID: 27734136 DOI: 10.1007/s00216-016-9936-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Molecular haplotyping is becoming increasingly important for studying the disease association of a specific allele because of its ability of providing more information than any single nucleotide polymorphism (SNP). Computational analysis and experimental techniques are usually performed for haplotypic determination. However, established methods are not suitable for analyzing haplotypes of massive natural DNA samples. Here we present a simple molecular approach to analyze haplotypes of conventional polymerase chain reaction (PCR) products quantitatively in a single sequencing run. In this approach, specific types and proportions of haplotypes in both individual and pooled samples could be determined by solving equations constructed from nonsynchronous pyrosequencing with di-base addition. Two SNPs (rs11176013 and rs11564148) in the gene for leucine-rich repeat kinase 2 (LRRK2) related to Parkinson's disease were selected as experimental sites. A series of DNA samples, including these two heterozygous loci, were investigated. This approach could accurately identify multiple DNA samples indicating that the approach is likely to be applied for haplotyping of unrestricted conventional PCR products from natural samples, and be especially applicable for analyzing short sequences in clinical diagnosis. Graphical Abstract One DNA sample consisting of 4 different DNA templates with different proportion are sequenced by nonsynchronous pyrosequencing with di-base addition. The number of incorporated nucleotides produced by a single sequencing reaction equals to the total of incorporated nucleotides. Four independent equations are constructed from the pyrograms of nonsynchronous pyrosequencing data. Molecular haplotypes of two adjacent SNPs can be quantitatively identified by solving these equations.
Collapse
Affiliation(s)
- Rongfang Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
11
|
Pu D, Mao C, Cui L, Shi Z, Xiao P. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping. Anal Bioanal Chem 2016; 408:3113-23. [PMID: 26935928 DOI: 10.1007/s00216-016-9359-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Chengguang Mao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lunbiao Cui
- Key Laboratory of Enteric Pathogenic Microbiology (NHFPC), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Zhiyang Shi
- Key Laboratory of Enteric Pathogenic Microbiology (NHFPC), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|