1
|
Lourêdo AAM, Pereira HH, Bonfilio R, Santos MG. Online restricted access molecularly imprinted solid phase extraction coupled with electrospray ionization-tandem mass spectrometry for determination of mebendazole and albendazole in milk samples. J Chromatogr A 2024; 1737:465466. [PMID: 39476776 DOI: 10.1016/j.chroma.2024.465466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Multifunctional materials, such as restricted access molecularly imprinted polymers covered with bovine serum albumin (RAMIP-BSA), are effective alternatives for sample preparation techniques. This material selectively adsorbs analytes while excluding macromolecules, enhancing the analysis's efficiency. Among analytical techniques, ESI-MS/MS (Electrospray Ionization-Tandem Mass Spectrometry) has successfully identified and quantified various molecules, including trace-level drugs. Therefore, we proposed, for the first time, an integrated online extraction/analysis system that combines the benefits of RAMIP-BSA and ESI-MS/MS for analyzing mebendazole (MBZ) and albendazole (ABZ) in milk samples without the need for chromatographic separation. Initially, a RAMIP selective for MBZ was synthesized using the bulk method with methacrylic acid and glycidyl methacrylate. Then, the polymer was covered with bovine serum albumin. Subsequently, this adsorbent was packed in a small column and coupled with an ESI-MS/MS instrument in an online configuration. Milli-Q water was used as the loading and reconditioning mobile phases, and a solution of formic acid in methanol (1:100 v/v) was employed as the elution phase. The system enabled simultaneous extraction and determination of MBZ and ABZ in milk samples. The method exhibited linearity between 15.0 and 125.0 μg L-1 for MBZ and 10.0 and 125.0 μg L-1 for ABZ (with a correlation coefficient exceeding 0.99). The limits of quantification were 15.0 and 10.0 μg L-1 for MBZ and ABZ, respectively. Good precision and accuracy were achieved. The developed method was used to analyze MBZ and ABZ in real milk samples and proved to be a viable alternative to conventional sample preparation and chromatographic techniques.
Collapse
Affiliation(s)
- Amanda Aparecida Marques Lourêdo
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Helton Hanchuck Pereira
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Rudy Bonfilio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
2
|
Liu H, Li Y, Wang S, Jiang X, Zhang S, Zhang G, Zhao Y. Magnetic solid-phase extraction of tetracyclines from milk using metal-organic framework MIL-101(Cr)-NH 2 functionalised hydrophilic magnetic nanoparticles. Food Chem 2024; 452:139579. [PMID: 38735111 DOI: 10.1016/j.foodchem.2024.139579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Novel metal-organic framework MIL-101(Cr)-NH2 functionalised hydrophilic polydopamine-modified Fe3O4 magnetic nanoparticles (Fe3O4@PDA@MIL-101(Cr)-NH2) were synthesised and used as magnetic solid-phase extraction (MSPE) adsorbents for extracting tetracyclines (TCs) from milk samples. The integrated Fe3O4@PDA@MIL-101(Cr)-NH2 exhibited convenient magnetic separation and exceptional multi-target binding capabilities. Furthermore, the PDA coating significantly enhanced the hydrophilicity and extraction efficiency of the material, thereby facilitating the extraction of trace TCs. Various factors affecting MSPE, such as adsorbent dosage, extraction time, pH value, and desorption conditions, were optimised. The developed MSPE method coupled with high-performance liquid chromatography demonstrated good linearity (R2 ≥ 0.9989), acceptable accuracy (82.2%-106.1%), good repeatability (intra-day precision of 0.8%-4.7% and inter-day precision of 1.1%-4.5%), low limits of detection (2.18-6.25 μg L-1), and low limits of quantification (6.54-18.75 μg L-1) in TCs detection. The approach was successfully used for the quantification of trace TCs in real milk samples.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Science, Xihua University, Chengdu 610039, China
| | - Yue Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu 610039, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu 610039, China
| | - Sisi Zhang
- School of Science, Xihua University, Chengdu 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China.
| |
Collapse
|
3
|
Fu XK, Han SQ, Ha W, Shi YP. Click Chemoselective Probe with a Photoswitchable Handle for Highly Sensitive Determination of Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14814-14824. [PMID: 37782472 DOI: 10.1021/acs.jafc.3c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 μg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Alexandridou A, Volmer DA. 2-fluoro-1-methylpyridinium p-toluene sulfonate: a new LC-MS/MS derivatization reagent for vitamin D metabolites. J Lipid Res 2023; 64:100409. [PMID: 37406930 PMCID: PMC10410174 DOI: 10.1016/j.jlr.2023.100409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Vitamin D analysis by MS faces several analytical challenges, including inefficient ionization, nonspecific fragmentation, interferences from epimers, isomers, and isobars, as well as very low concentration levels. In this study, we used 2-fluoro-1-methylpyridinium (FMP) p-toluene sulfonate for derivatization of vitamin D3 metabolites to increase detection sensitivity and allow for full chromatographic separation of vitamin D isomers and epimers. UHPLC-MS/MS was used for measurement of five vitamin D3 metabolites in human serum. Compared with Amplifex and 4-phenyl-1,2,4-triazolin-3,5-dion, the FMP p-toluene sulfonate reaction required less time to be performed. The method was optimized and validated to ensure accuracy, precision, and reliability. In-house and commercial quality control samples were used to assure the quality of the results for 25-hydroxyvitamin D3. The method showed very good linearity and intraday and interday accuracy and precision; coefficients of determination (r2) ranged between 0.9977 and 0.9992, relative recovery from 95 to 111%, and coefficient of variation from 0.9 to 11.3. Stability tests showed that the extracted derivatized serum samples were stable for 24 h after storage at -20°C; 24,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3-FMP derivatives were stable for 1 week at -80°C. The method was applied to samples of healthy individuals for quantitative determination of vitamin D3, the two epimers of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
| | - Dietrich A Volmer
- Bioanalytical Chemistry, Humboldt University Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Vitku J, Horackova L, Kolatorova L, Duskova M, Skodova T, Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115083. [PMID: 37269613 DOI: 10.1016/j.ecoenv.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - L Horackova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| | - L Kolatorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Duskova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - T Skodova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Simkova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| |
Collapse
|
6
|
Wang Z, Mo C, Awad K, Bonewald L, Brotto M. Mass Spectrometry Approaches for Detection and Determination of Prostaglandins from Biological Samples. Methods Mol Biol 2023; 2625:299-311. [PMID: 36653652 DOI: 10.1007/978-1-0716-2966-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Accurate determination of prostaglandins (PGs) from biological samples is critical for understanding their biological functions and interactions during physiological and pathological processes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a highly sensitive, accurate, and high-throughput approach for simultaneous detection of ultra-trace PGs from a single biological sample. Here we describe LC-MS/MS techniques and related sample pretreatment methods including both off-line and on-line SPE for the determination of PGs in biological samples.
Collapse
Affiliation(s)
- Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA
| | - Lynda Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University Medical School, Indianapolis, IN, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
7
|
Braun V, Stuppner H, Risch L, Seger C. Design and Validation of a Sensitive Multisteroid LC-MS/MS Assay for the Routine Clinical Use: One-Step Sample Preparation with Phospholipid Removal and Comparison to Immunoassays. Int J Mol Sci 2022; 23:14691. [PMID: 36499017 PMCID: PMC9736865 DOI: 10.3390/ijms232314691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid analysis in clinical laboratories is dominated by immunoassays (IAs) that have a high sample turnover but are inherently limited in trueness, precision, and sensitivity. Liquid chromatography coupled to mass spectrometry (LC-MS/MS) has proved to be a far more capable tool, delivering better sensitivity, specificity, and the possibility of parallel analysis of multiple steroids and metabolites, providing the endocrinologist with more reliable and comprehensive diagnostic information. An LC-MS/MS assay with gradient elution over less than eight minutes and a one-step sample preparation combining protein precipitation with phospholipid removal of off-line solid-phase extraction was developed and validated. It allowed the quantification of 11-deoxycorticosterone (11-DOC), 11-deoxycortisol (11-DF), 17-OH-progesterone (17P), 21-deoxycortisol (21-DF), androstenedione (ANDRO), aldosterone (ALDO), corticosterone (CC), cortisol (CL), cortisone (CN), dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), dihydrotestosterone (DHT), estradiol (E2), progesterone (PROG), and testosterone (TES) in human serum. Interday imprecision was generally better than 15%, trueness was proven by recovery experiments with ISO 17034-certified reference materials, proficiency testing (UK NEQAS), and measuring serum reference standards. In-house comparison against IVD-CE-certified immunoassays (IA) for 17P, ANDRO, CL, DHEAS, E2, PROG, and TES was conducted by assessing leftover routine patient samples and purpose-built patient serum pools. None of the compared routine IAs were meeting the standards of the LC-MS/MS. Insufficient overall comparability was found for ANDRO and 17P (mean bias > +65%). Accuracy limitations at lower concentrations were present in IAs for PROG, E2, and TES.
Collapse
Affiliation(s)
- Valentin Braun
- Department of Pharmacognosy, Institute of Pharmacy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Dr. Risch Ostschweiz AG, Lagerstrasse 30, 9470 Buchs, Switzerland
| | - Hermann Stuppner
- Department of Pharmacognosy, Institute of Pharmacy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Lorenz Risch
- Dr. Risch Ostschweiz AG, Lagerstrasse 30, 9470 Buchs, Switzerland
| | - Christoph Seger
- Department of Pharmacognosy, Institute of Pharmacy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Dr. Risch Ostschweiz AG, Lagerstrasse 30, 9470 Buchs, Switzerland
| |
Collapse
|
8
|
Kafeenah H, Kuo CM, Chang TY, Jen HH, Yang JH, Shen YS, Wu CH, Chen SH. Label-free and de-conjugation-free workflow to simultaneously quantify trace amount of free/conjugated and protein-bound estrogen metabolites in human serum. Anal Chim Acta 2022; 1232:340457. [DOI: 10.1016/j.aca.2022.340457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
|
9
|
Gravitte A, Archibald T, Cobble A, Kennard B, Brown S. Liquid chromatography-mass spectrometry applications for quantification of endogenous sex hormones. Biomed Chromatogr 2020; 35:e5036. [PMID: 33226656 DOI: 10.1002/bmc.5036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
Liquid chromatography, coupled with tandem mass spectrometry, presents a powerful tool for the quantification of the sex steroid hormones 17-β estradiol, progesterone and testosterone from biological matrices. The importance of accurate quantification with these hormones, even at endogenous levels, has evolved with our understanding of the role these regulators play in human development, fertility and disease risk and manifestation. Routine monitoring of these analytes can be accomplished by immunoassay techniques, which face limitations on specificity and sensitivity, or using gas chromatography-mass spectrometry. LC-MS/MS is growing in capability and acceptance for clinically relevant quantification of sex steroid hormones in biological matrices and is able to overcome many of the limitations of immunoassays. Analyte specificity has improved through the use of novel derivatizing agents, and sensitivity has been refined through the use of high-resolution chromatography and mass spectrometric technology. This review highlights these innovations, among others, in LC-MS/MS steroid hormone analysis captured in the literature over the last decade.
Collapse
Affiliation(s)
- Amy Gravitte
- James H Quillen College of Medicine, East Tennessee State University, Department of Biomedical Sciences, Johnson City, TN, USA
| | - Timothy Archibald
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Allison Cobble
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Benjamin Kennard
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| | - Stacy Brown
- Bill Gatton College of Pharmacy, East Tennessee State University, Department of Pharmaceutical Sciences, Johnson City, TN, USA
| |
Collapse
|
10
|
York JL, Magnuson RH, Schug KA. On-line sample preparation for multiclass vitamin, hormone, and mycotoxin determination in chicken egg yolk using LC-MS/MS. Food Chem 2020; 326:126939. [DOI: 10.1016/j.foodchem.2020.126939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
|
11
|
Wang X, Liu H, Sun Z, Zhao S, Zhou Y, Li J, Cai T, Gong B. Monodisperse restricted access material with molecularly imprinted surface for selective solid‐phase extraction of 17β‐estradiol from milk. J Sep Sci 2020; 43:3520-3533. [DOI: 10.1002/jssc.202000449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoxiao Wang
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Huachun Liu
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Zhian Sun
- School of Chemistry and Materials ScienceNorthwest University Xi'an P. R. China
| | - Shanwen Zhao
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Yanqiang Zhou
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Jianmin Li
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Tianpei Cai
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| | - Bolin Gong
- School of Chemistry and Chemical EngineeringNorth Minzu University Yinchuan P. R. China
| |
Collapse
|
12
|
Zhou Y, Liu H, Li J, Sun Z, Cai T, Wang X, Zhao S, Gong B. Restricted access magnetic imprinted microspheres for directly selective extraction of tetracycline veterinary drugs from complex samples. J Chromatogr A 2019; 1613:460684. [PMID: 31711612 DOI: 10.1016/j.chroma.2019.460684] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
A novel restricted access media-magnetic molecularly imprinted polymers (RAM-MMIPs) was prepared as magnetic-solid phase extraction (M-SPE) material for tetracyclines (TCs). The RAM-MMIPs can not only specifically adsorb target molecules in samples, but also effectively eliminate the interference of protein macromolecules. The protein exclusion rate is 99.4%. Besides, RAM-MMIPs have a uniform imprinted and hydrophilic layer (600 nm), rapid binding kinetic (35 min), high selectivity and larger adsorption capacity. The M-SPE was coupled with HPLC/UV to extract TCs from untreated milk and egg samples, and several major factors affecting M-SPE efficiency were optimized. Under optimized conditions, the developed method achieved good linearity (R2>0.9989), lower limits of detection (LOD) and higher recoveries of TCs. For milk samples, the LOD is 1.03-1.31 μg L-1 and the recovery is 86.7% to 98.6% with relative standard deviation (RSD) of 1.4-5.7%. For the egg samples, the LOD, recovery and RSD are 2.21-2.67 μg L-1, 84.2-96.5% and 1.7-5.9%, respectively. Consequently, this work provides an improved strategy for the selective extraction and detection of target molecules directly from complex samples with proteins.
Collapse
Affiliation(s)
- Yanqiang Zhou
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Huachun Liu
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Jianmin Li
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Zhian Sun
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Tianpei Cai
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Xiaoxiao Wang
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Shanwen Zhao
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, North Minzu University, No. 204 Wenchang North Street, Xixia District, Yinchuan, 750021, China.
| |
Collapse
|
13
|
Denver N, Khan S, Homer NZM, MacLean MR, Andrew R. Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 2019; 192:105373. [PMID: 31112747 PMCID: PMC6726893 DOI: 10.1016/j.jsbmb.2019.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC-MS, GC-MS/MS, LC-MS and LC-MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5-5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment.
Collapse
Affiliation(s)
- Nina Denver
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Shazia Khan
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom.
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| |
Collapse
|
14
|
A novel diagnostic in situ derivatization kit for the simultaneous determination of 14 biomarkers of exposure to benzene, toluene, ethyl benzene and xylenes in human urine by isotope dilution liquid chromatography tandem mass spectrometry and kit optimization using response surface methodology. Anal Chim Acta 2018; 1036:195-203. [DOI: 10.1016/j.aca.2018.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/28/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
15
|
Kalu Appulage D, Wang EH, Figard BJ, Schug KA. An integrated multipath liquid chromatography-mass spectrometry system for the simultaneous preparation, separation, and detection of proteins and small molecules. J Sep Sci 2018; 41:2702-2709. [PMID: 29676850 DOI: 10.1002/jssc.201800298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 11/08/2022]
Abstract
A multipath liquid chromatography with mass spectrometry instrument was constructed with the help of restricted access media to online segregate small and large molecules. This liquid chromatography system was custom built with five pumps and three two-position six-port valves to control the flow in a multipath system for the simultaneous analysis of small molecules and proteins. On separate chromatographic channels, small molecules trapped and proteins excluded from the online restricted access media were analyzed downstream using high-efficiency columns and a triple quadrupole mass spectrometer. A model sample, which included five proteins and 22 small molecules with different physicochemical properties, was used to evaluate the system. Following injection, the complete multipath separation and detection was performed in 22 min. Protein exclusion by the restricted access media was not quantitative. Four commercial trap columns were evaluated for their exclusion efficiency toward the proteins. Exclusion efficiency varied from <50% to only a maximum of 75% exclusion across the trap columns tested. An attempt was made to optimize the exclusion efficiency using different flow rates, flow rate gradients, and different additives both in the sample and the mobile phases. Protein exclusion was still erratic and generally nonquantitative.
Collapse
Affiliation(s)
- Dananjaya Kalu Appulage
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Evelyn H Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
16
|
de Faria HD, Bueno CT, Krieger JE, Krieger EM, Pereira AC, Santos PCJL, Figueiredo EC. Online extraction of antihypertensive drugs and their metabolites from untreated human serum samples using restricted access carbon nanotubes in a column switching liquid chromatography system. J Chromatogr A 2017; 1528:41-52. [PMID: 29102378 DOI: 10.1016/j.chroma.2017.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 02/03/2023]
Abstract
A novel analytical method was developed to determine 5 antihypertensive drugs of different pharmacological classes (angiotensin-converting enzyme inhibitors, calcium channel blockers, α-2 adrenergic receptor agonists, angiotensin II receptor blockers, and aldosterone receptor antagonists) and some of their metabolites in human serum. The untreated samples were directly analyzed in a column switching system using an extraction column packed with restricted access carbon nanotubes (RACNTs) in an ultra-high performance liquid chromatography coupled to a mass spectrometer (UHPLC-MS/MS). The RACNTs column was able to exclude approximately 100% of proteins from the samples in 2.0min, maintaining the same performance for about 300 analytical cycles. The method was validated in accordance with Food and Drug Administration (FDA) guidelines, being linear for all the determined analytes in their respective analytical ranges (coefficients of determination higher than 0.99) with limits of detection (LODs) and quantification (LOQs) ranging from 0.09 to 10.85μgL-1 and from 0.30 to 36.17μgL-1, respectively. High recovery values (88-112%) were obtained as well as suitable results for inter and intra-assay accuracy and precision. The method provided an analytical frequency of 5 samples per hour, including the sample preparation and separation/detection steps. The validated method was successfully used to analyze human serum samples of patients undergoing treatment with antihypertensive drugs, being useful for pharmacometabolomic, pharmacogenomic, and pharmacokinetic studies.
Collapse
Affiliation(s)
- Henrique Dipe de Faria
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil
| | - Carolina Tosin Bueno
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Eduardo Moacyr Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Paulo Caleb Júnior Lima Santos
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; Department of Pharmacology - Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Eduardo Costa Figueiredo
- Laboratory of Toxicant and Drug Analysis, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil.
| |
Collapse
|
17
|
Wang Z, Bian L, Mo C, Kukula M, Schug KA, Brotto M. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Anal Chim Acta 2017; 984:151-161. [PMID: 28843558 DOI: 10.1016/j.aca.2017.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
Lipid mediators (LMs) are a class of bioactive metabolites of the essential polyunsaturated fatty acids (PUFA), which are involved in many physiological processes. Their quantification in biological samples is critical for understanding their functions in lifestyle and chronic diseases, such as diabetes, as well allergies, cancers, and in aging processes. We developed a rapid, and sensitive LC-MS/MS method to quantify the concentrations of 14 lipid mediators of interest in mouse skeletal muscle tissue without time-consuming liquid-liquid or solid-phase extractions. A restricted-access media (RAM) based trap was used prior to LC-MS as cleanup process to prevent the analytical column from clogging and deterioration. The system enabled automatic removal of residual proteins and other biological interferences presented in the tissue extracts; the target analytes were retained in the trap and then eluted to an analytical column for separation. Matrix evaluation tests demonstrated that the use of the combined RAM trap and chromatographic separation efficiently eliminated the biological or chemical matrix interferences typically encountered in bioanalytical analysis. Using 14 LM standards and 12 corresponding deuterated compounds as internal standards, the five-point calibration curves, established over the concentration range of 0.031-320 ng mL-1, demonstrated good linearity of r2 > 0.9903 (0.9903-0.9983). The lower detection limits obtained were 0.016, 0.031, 0.062, and 0.31 ng mL-1 (0.5, 1, 2, and 10 pg on column), respectively, depending on the specific compounds. Good accuracy (87.1-114.5%) and precision (<13.4%) of the method were observed for low, medium, and high concentration quality control samples. The method was applied to measure the amount of 14 target LMs in mouse skeletal muscle tissues. All 14 analytes in this study were successfully detected and quantified in the gastrocnemius muscle samples, which provided crucial information for both age and gender-related aspects of LMs signaling in skeletal muscles previously unknown. This method could be applied to advance the understanding of skeletal muscle pathophysiology to study the role of LMs in health and disease. Furthermore, we will expand the application of this methodology to humans and other tissues/matrices in the near future.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA
| | - Liangqiao Bian
- Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Chenglin Mo
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA
| | - Maciej Kukula
- Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Marco Brotto
- College of Nursing and Health Innovation, The University of Texas at Arlington, 411 S. Nedderman Dr., Arlington, TX 76019, USA.
| |
Collapse
|
18
|
de Faria HD, Abrão LCDC, Santos MG, Barbosa AF, Figueiredo EC. New advances in restricted access materials for sample preparation: A review. Anal Chim Acta 2017; 959:43-65. [DOI: 10.1016/j.aca.2016.12.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/27/2022]
|
19
|
Baghdady YZ, Schug KA. Evaluation of efficiency and trapping capacity of restricted access media trap columns for the online trapping of small molecules. J Sep Sci 2016; 39:4183-4191. [DOI: 10.1002/jssc.201600777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Yehia Z. Baghdady
- Department of Chemistry & Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
20
|
Wang Q, Mesaros C, Blair IA. Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography-mass spectrometry: Assay considerations and suggested practices. J Steroid Biochem Mol Biol 2016; 162:70-9. [PMID: 26767303 PMCID: PMC4931956 DOI: 10.1016/j.jsbmb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
Estrogen measurements play an important role in the clinical evaluation of many endocrine disorders as well as in research on the role of hormones in human biology and disease. It remains an analytical challenge to quantify estrogens and their metabolites in specimens from special populations including older men, children, postmenopausal women and women receiving aromatase inhibitors. Historically, immunoassays have been used for measuring estrogens and their metabolites in biological samples for risk assessment. However, the lack of specificity and accuracy of immunoassay-based methods has caused significant problems when interpreting data generated from epidemiological studies and across different laboratories. Stable isotope dilution (SID) methodology coupled with liquid chromatography-selected reaction monitoring-mass spectrometry (LC-SRM/MS) is now accepted as the 'gold-standard' to quantify estrogens and their metabolites in serum and plasma due to improved specificity, high accuracy, and the ability to monitor multiple estrogens when compared with immunoassays. Ultra-high sensitivity can be obtained with pre-ionized derivatives when using triple quadruple mass spectrometers in the selected reaction monitoring (SRM) mode coupled with nanoflow LC. In this review, we have examined the special issues related to utilizing ultra-high sensitivity SID LC-SRM/MS-based methodology to accurately quantify estrogens and their metabolites in the serum and plasma from populations with low estrogen levels. The major issues that are discussed include: sample preparation for both unconjugated and conjugated estrogens, derivatization, chromatographic separation, matrix effects, and assay validation.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Xiao D, Liu S, Liang L, Bi Y. Magnetic restricted-access microspheres for extraction of adrenaline, dopamine and noradrenaline from biological samples. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1768-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
García-Fonseca S, Rubio S. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals. Talanta 2016; 148:370-9. [DOI: 10.1016/j.talanta.2015.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
|
23
|
Faqehi AMM, Cobice DF, Naredo G, Mak TCS, Upreti R, Gibb FW, Beckett GJ, Walker BR, Homer NZM, Andrew R. Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry. Talanta 2015; 151:148-156. [PMID: 26946022 PMCID: PMC4791381 DOI: 10.1016/j.talanta.2015.12.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/02/2022]
Abstract
Estrogens circulate at concentrations less than 20 pg/mL in men and postmenopausal women, presenting analytical challenges. Quantitation by immunoassay is unreliable at these low concentrations. Liquid chromatography tandem mass spectrometry (LC–MS/MS) offers greater specificity and sometimes greater sensitivity, but ionization of estrogens is inefficient. Introduction of charged moieties may enhance ionization, but many such derivatives of estrogens generate non-specific product ions originating from the “reagent” group. Therefore an approach generating derivatives with product ions specific to individual estrogens was sought. Estrogens were extracted from human plasma and serum using solid phase extraction and derivatized using 2-fluoro-1-methylpyridinium-p-toluenesulfonate (FMP-TS). Electrospray in positive mode with multiple reaction monitoring using a QTrap 5500 mass spectrometer was used to quantify “FMP” derivatives of estrogens, following LC separation. Transitions for the FMP derivatives of estrone (E1) and estradiol (E2) were compound specific (m/z 362→238 and m/z 364→128, respectively). The limits of detection and quantitation were 0.2 pg on-column and the method was linear from 1–400 pg/sample. Measures of intra- and inter-assay variability, precision and accuracy were acceptable (<20%). The derivatives were stable over 24 h at 10 °C (7–9% degradation). Using this approach, E1 and E2, respectively were detected in human plasma and serum: pre-menopausal female serum (0.5 mL) 135–473, 193–722 pmol/L; male plasma (1 mL) 25–111, 60–180 pmol/L and post-menopausal female plasma (2 mL), 22–78, 29–50 pmol/L. Thus FMP derivatization, in conjunction with LC–MS/MS, is suitable for quantitative analysis of estrogens in low abundance in plasma and serum, offering advantages in specificity over immunoassay and existing MS techniques. Quantitative analysis of low amounts of estrone and estradiol in plasma and serum. Quantitation across physiological range in men and pre- and post-menopausal women. Methylpyridinium ether derivatives improve analytical specificity and sensitivity.
Collapse
Affiliation(s)
- Abdullah M M Faqehi
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Diego F Cobice
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Gregorio Naredo
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Tracy C S Mak
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Rita Upreti
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Fraser W Gibb
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Geoffrey J Beckett
- Clinical Biochemistry, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, United Kingdom.
| | - Brian R Walker
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | - Ruth Andrew
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom; Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
24
|
Baghdady YZ, Schug KA. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J Sep Sci 2015; 39:102-14. [DOI: 10.1002/jssc.201501003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yehia Z. Baghdady
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|