1
|
Tang ZD, Sun XM, Huang TT, Liu J, Shi B, Yao H, Zhang YM, Wei TB, Lin Q. Pillar[n]arenes-based materials for detection and separation of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Preparation of boronate-modified larger mesoporous polymer microspheres with fumed silica nanoparticle and toluene as synergistic porogen for selective separation of sulfonamides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wang ZH, Zhang YF, Sun XW, Li YJ, Zhang YM, Wei TB, Yao H, Lin Q. Linear tri-pillar[5]arene-based acceptor for efficiently separate paraquat from water through collaboration effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111358. [PMID: 33254978 DOI: 10.1016/j.msec.2020.111358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
Abstract
Paraquat, one of non-selective herbicides, is widely used in agricultural production. However, it can cause death of people or animals quickly owing to its fatal toxicity. In the present work, for efficient separation and removal of the paraquat, a concept "employ collaboration effect to enhance the Host-Guest interactions" was rationally introduced into the design of paraquat adsorbent material. According to this concept, a novel linear tri-pillar[5]arene-based acceptor molecule was synthesized. Interestingly, the acceptor shows outstanding adsorption properties for paraquat through the collaboration effect of the adjacent pillar[5]arene moieties in the linear tri-pillar[5]arene acceptor. Compared with other adsorbents such as activated carbon and single-pillar[5]arene-based adsorbent materials, the linear tri-pillar[5]arene acceptor shows higher adsorption rate for paraquat. Additionally, the linear tri-pillar[5]arene acceptor was applied to adsorb the commercial pesticide paraquat sample in water with adsorption rate of 98%. Therefore, the linear tri-pillar[5]arene acceptor could serve as a paraquat adsorbent material and convey greatly potential application in the field of removal of paraquat. The concept "employ collaboration effect to enhance the Host-Guest interactions" is a useful way for the development of adsorption materials.
Collapse
Affiliation(s)
- Zhong-Hui Wang
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiao-Wen Sun
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Camptothecin-imprinted polymer microspheres with rosin-based cross-linker for separation of camptothecin from Camptotheca acuminata fruit. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Duan R, Sun L, Yang HY, Ma YR, Deng XY, Peng C, Zheng C, Dong LY, Wang XH. Preparation of phenyl–boronic acid polymeric monolith by initiator-free ring-opening polymerization for microextraction of sulfonamides prior to their determination by ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2020; 1609:460510. [DOI: 10.1016/j.chroma.2019.460510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
|
6
|
Peng C, Lan YH, Sun L, Chen XZ, Chi SS, Zheng C, Dong LY, Wang XH. Facile Synthesis of Boronate Affinity-Based Molecularly Imprinted Monolith with Reduced Capturing pH Towards Cis-Diol-Containing Compounds. Chromatographia 2019. [DOI: 10.1007/s10337-019-03736-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Preparation of phenyl-boronic acid polymer monolith by initiator-free ring-opening polymerization for microextraction of sulfamethoxazole and trimethoprim from animal-originated foodstuffs. J Chromatogr A 2019; 1590:10-18. [DOI: 10.1016/j.chroma.2018.12.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
|
8
|
Xie L, Huang J, Han Q, Song Y, Liu P, Kang X. Solid phase extraction with Polypyrrole nanofibers for simultaneously determination of three water-soluble vitamins in urine. J Chromatogr A 2019; 1589:30-38. [DOI: 10.1016/j.chroma.2018.12.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022]
|
9
|
Xie L, Chen L, Gu P, Wei L, Kang X. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites. J Vis Exp 2018. [PMID: 29553566 DOI: 10.3791/56445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a significant difference in urinary MHPG between the two groups, indicating that the catecholamine metabolites may be an important candidate marker for early diagnosis of cases at risk for brain damage in infants.
Collapse
Affiliation(s)
- Li Xie
- School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou;
| | - Liqin Chen
- School of Public Health, Tianjin Medical University
| | - Pan Gu
- British Columbia Academy, Nanjing Foreign Language School
| | - Lanlan Wei
- School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University
| |
Collapse
|
10
|
Boronate-modified hollow molecularly imprinted polymers for selective enrichment of glycosides. Mikrochim Acta 2017; 185:46. [DOI: 10.1007/s00604-017-2608-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
11
|
One-step targeted accumulation and detection of camptothecin analogues from fruits of Camptotheca acuminata Decne using bilayer solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2017; 1524:37-48. [DOI: 10.1016/j.chroma.2017.09.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/27/2017] [Accepted: 09/30/2017] [Indexed: 12/21/2022]
|
12
|
Tsai CH, Fang YW, Chen HT, Kao CL. Accelerated hydrolysis of boronic acid in a modified poly(amidoamine) dendrimer: identification of a factor leading to the production of an impurity in boronic acid containing poly(amidoamine) dendrimers. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The preparation of boronic acid containing dendrimers is still a difficult task in dendrimer chemistry. In this investigation, an unanticipated hydrolysis product (4) was identified during the preparation of (G:2)-PAMAM-dendri-(4-phenyl boronic acid)14 (3) by acquiring its 1H NMR, 13C NMR, and UV–vis absorption spectra and IR spectra and comparing them with those of 4-hydroxylbenzoic acid (5). Furthermore, an Alizarin Red S staining analysis, ICP-MS, and 11B NMR spectrum indicated the lack of boronic acid in 4. Finally, treatment of 3 with hydrogen peroxide gave a product that was determined to be identical to dendrimer 4. By analyzing the formation of 4 under various conditions, the presence of numerous primary amines in a PAMAM dendrimer did accelerate the hydrolysis of peripheral boronic acid. This investigation revealed an apparent intrinsic problem that needs to be overcome during the preparation of boronic acid containing dendrimers and related boronic acid containing macromolecules.
Collapse
Affiliation(s)
- Ching-Hua Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Wen Fang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ting Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
13
|
Shang B, Peng T, Zhang H, Wang H, Yu F, Chen Q. Sensitive determination of yohimbine in plasma by micropipette tip-based poly(methacrylic acid- co-ethylene glycol dimethacrylate) monolith SPME coupled with HPLC method. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1318398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bing Shang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tao Peng
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hongmei Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fei Yu
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qinhua Chen
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
14
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|