1
|
Soldado A, Barrio LC, Díaz-Gonzalez M, de la Escosura-Muñiz A, Costa-Fernandez JM. Advances in quantum dots as diagnostic tools. Adv Clin Chem 2022; 107:1-40. [PMID: 35337601 DOI: 10.1016/bs.acc.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantum dots (QDs) are crystalline inorganic semiconductor nanoparticles a few nanometers in size that possess unique optical electronic properties vs those of larger materials. For example, QDs usually exhibit a strong and long-lived photoluminescence emission, a feature dependent on size, shape and composition. These special optoelectronic properties make them a promising alternative to conventional luminescent dyes as optical labels in biomedical applications including biomarker quantification, biomolecule targeting and molecular imaging. A key parameter for use of QDs is to functionalize their surface with suitable (bio)molecules to provide stability in aqueous solutions and efficient and selective tagging biomolecules of interest. Researchers have successfully developed biocompatible QDs and have linked them to various biomolecule recognition elements, i.e., antibodies, proteins, DNA, etc. In this chapter, QD synthesis and characterization strategies are reviewed as well as the development of nanoplatforms for luminescent biosensing and imaging-guided targeting. Relevant biomedical applications are highlighted with a particular focus on recent progress in ultrasensitive detection of clinical biomarkers. Finally, key future research goals to functionalize QDs as diagnostic tools are explored.
Collapse
Affiliation(s)
- Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Laura Cid Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - María Díaz-Gonzalez
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
2
|
Liu Y, Li R, Liang F, Deng C, Seidi F, Xiao H. Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosens Bioelectron 2022; 197:113781. [PMID: 34781178 DOI: 10.1016/j.bios.2021.113781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Demand on the quick screening of gastric cancer (GC) has significantly stimulated the development of biomarker sensing techniques. Herein, we report the novel fluorescent paper-based analytical devices (PADs) for detections of GC-related microRNA-21 (miRNA-21) and circular RNA from Hippocampus Abundant Transcript 1 gene (circRNA-HIAT1) with prominent reliability and sensitivity. The PADs, constructed by in-situ synthesis of blue-emissive carbon dots (CDs) and conjugations of probe DNAs, exhibit the superior uniformity and stability. In the presence of targets, rolling circle amplifications (RCA) are triggered to generate long DNA strands for the assemblies of green-/red-emissive labels. Consequently, remarkable blue-to-green and blue-to-red emission color transitions of the PADs are achieved, implementing the color-analysis of miRNA-21 and circRNA-HIAT1, respectively. Benefited from the efficient RCA, coupled with the drastic ratiometric fluorescent changes, the limit of detections (LODs) of PADs are found to be several fM with the upper limit of the linear detection range at 1 nM. More importantly, the fluorescent PADs possess excellent specificity, as well as anti-interference capability in biological settings, enabling their applications in accurate GC screening with plasma samples. Overall, the proposed fluorescent PADs are featured with robust sensing platform, facile signal readout, and exceptional dual-type RNA sensing performance, holding high potential in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ruyi Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Fangyuan Liang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chao Deng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B5A3, Canada.
| |
Collapse
|
3
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, Kamei DT. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens Bioelectron 2020; 170:112674. [PMID: 33035900 PMCID: PMC7529604 DOI: 10.1016/j.bios.2020.112674] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Early disease detection through point-of-care (POC) testing is vital for quickly treating patients and preventing the spread of harmful pathogens. Disease diagnosis is generally accomplished using quantitative polymerase chain reaction (qPCR) to amplify nucleic acids in patient samples, permitting detection even at low target concentrations. However, qPCR requires expensive equipment, trained personnel, and significant time. These resources are not available in POC settings, driving researchers to instead utilize isothermal amplification, conducted at a single temperature, as an alternative. Common isothermal amplification methods include loop-mediated isothermal amplification, recombinase polymerase amplification, rolling circle amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. There has been a growing interest in combining such amplification methods with POC detection methods to enable the development of diagnostic tests that are well suited for resource-limited settings as well as developed countries performing mass screenings. Exciting developments have been made in the integration of these two research areas due to the significant impact that such approaches can have on healthcare. This review will primarily focus on advances made by North American research groups between 2015 and June 2020, and will emphasize integrated approaches that reduce user steps, reliance on expensive equipment, and the system's time-to-result.
Collapse
Affiliation(s)
- Elizabeth A Pumford
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Jiakun Lu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Iza Spaczai
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Matthew E Prasetyo
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Elaine M Zheng
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Hanxu Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
|
6
|
Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020; 378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/29/2020] [Indexed: 01/22/2023]
Abstract
Quantum dots (QDs) are a special type of engineered nanomaterials with outstanding optoelectronic properties that make them as a very promising alternative to conventional luminescent dyes in biomedical applications, including biomolecule (BM) targeting, luminescence imaging and drug delivery. A key parameter to ensure successful biomedical applications of QDs is the appropriate surface modification, i.e. the surface of the nanomaterials should be modified with the appropriate functional groups to ensure stability in aqueous solutions and it should be conjugated with recognition elements capable of ensuring an efficient tagging of the BMs of interest. In this review we summarize the most relevant strategies used for surface modification of QDs and for their conjugation to BMs in preparation of their application in nanoplatforms for luminescent BM sensing and imaging-guided targeting. The applications of conjugations of photoluminescent QDs with different BMs in both in vitro and in vivo chemical sensing, immunoassays or luminescence imaging are reviewed. Recent progress in the application of functionalized QDs in ultrasensitive detection in bioanalysis, diagnostics and imaging strategies are reported. Finally, some key future research goals in the progress of bioconjugation of QDs for diagnosis are identified, including novel synthetic approaches, the need for exhaustive characterization of bioconjugates and the design of signal amplification schemes.
Collapse
|
7
|
Liu Y, Feng X, Yu Y, Zhao Q, Tang C, Zhang J. A review of bioselenol-specific fluorescent probes: Synthesis, properties, and imaging applications. Anal Chim Acta 2020; 1110:141-150. [PMID: 32278389 DOI: 10.1016/j.aca.2020.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Bioselenols are important substances for the maintenance of physiological balance and offer anticancer properties; however, their causal mechanisms and effectiveness have not been assessed. One way to explore their physiological functions is the in vivo detection of bioselenols at the molecular level, and one of the most efficient ways to do so is to use fluorescent probes. Various types of bioselenol-specific fluorescent probes have been synthesized and optimized using chemical simulations and by improving biothiol fluorescent probes. Here, we review recent advances in bioselenol-specific fluorescent probes for selenocysteine (Sec), thioredoxin reductase (TrxR), and hydrogen selenide (H2Se). In particular, the molecular design principles of different types of bioselenols, their corresponding sensing mechanisms, and imaging applications are summarized.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Hong S, Samson AAS, Song JM. Application of fluorescence resonance energy transfer to bioprinting. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Hu J, Xiao K, Jin B, Zheng X, Ji F, Bai D. Paper-based point-of-care test with xeno nucleic acid probes. Biotechnol Bioeng 2019; 116:2764-2777. [PMID: 31282991 DOI: 10.1002/bit.27106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Bridging the unmet need of efficient point-of-care testing (POCT) in biomedical engineering research and practice with the emerging development in artificial synthetic xeno nucleic acids (XNAs), this review summarized the recent development in paper-based POCT using XNAs as sensing probes. Alongside the signal transducing mode and immobilization methods of XNA probes, a detailed evaluation of probe performance was disclosed. With these new aspects, both researchers in synthetic chemistry / biomedical engineering and physicians in clinical practice could gain new insights in designing, manufacturing and choosing suitable reagents and techniques for POCT.
Collapse
Affiliation(s)
- Jie Hu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kang Xiao
- Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Birui Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, P. R. China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dan Bai
- Xi'an Institute of Flexible Electronics (IFE) & Xi'an Key Laboratory of Flexible Electronics (KLoFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, P. R. China.,Xi'an Institute of Biomedical Materials and Engineering (IBME) & Xi'an Key Laboratory of Biomedical Materials and Engineering (KLBME), Northwestern Polytechnical University (NPU), Xi'an, Shaanxi, P. R. China
| |
Collapse
|
10
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Malhotra K, Noor MO, Krull UJ. Detection of cystic fibrosis transmembrane conductance regulator ΔF508 gene mutation using a paper-based nucleic acid hybridization assay and a smartphone camera. Analyst 2019; 143:3049-3058. [PMID: 29808840 DOI: 10.1039/c8an00509e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diagnostic technology that makes use of paper platforms in conjunction with the ubiquitous availability of digital cameras in cellular telephones and personal assistive devices offers opportunities for development of bioassays that are cost effective and widely distributed. Assays that operate effectively in aqueous solution require further development for implementation in paper substrates, overcoming issues associated with surface interactions on a matrix that offers a large surface-to-volume ratio and constraints on convective mixing. This report presents and compares two related methods for determination of oligonucleotides that serve as indicators of cystic fibrosis, differentiating between the normal wild-type sequence, and a mutant-type sequence that has a 3-base replacement. The transduction strategy operates by selective hybridization of oligonucleotide probes that are conjugated to fluorescent quantum dots, where hybridization of target sequences causes a molecular fluorophore to approach the quantum dot and become emissive through fluorescence resonance energy transfer. Detection can rely on hybridization of a target that is labelled with Cy3 fluorophore, or in the presence of an unlabelled target when a sandwich assay format is implemented with a labelled reporter oligonucleotide. Selectivity to determine the presence of mismatched sequences involves appropriate selection of nucleotide sequences to set melt temperatures, in conjunction with control of stringency conditions using formamide as a chaotrope. It was determined that both direct and sandwich assays on paper substrates are able to distinguish between wild-type and mutant-type samples.
Collapse
Affiliation(s)
- Karan Malhotra
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, 3359 Mississauga Road North, L5L 1C6, Canada.
| | | | | |
Collapse
|
12
|
Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Dong T, Wang GA, Li F. Shaping up field-deployable nucleic acid testing using microfluidic paper-based analytical devices. Anal Bioanal Chem 2019; 411:4401-4414. [DOI: 10.1007/s00216-019-01595-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/31/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
|
14
|
Shahmuradyan A, Moazami-Goudarzi M, Kitazume F, Espie GS, Krull UJ. Paper-based platform for detection by hybridization using intrinsically labeled fluorescent oligonucleotide probes on quantum dots. Analyst 2018; 144:1223-1229. [PMID: 30534674 DOI: 10.1039/c8an01431k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A paper-based platform was investigated in which the selective detection of oligonucleotide targets by hybridization was accomplished via the enhancement of fluorescence emission from intrinsically labeled DNA probes that were immobilized on the surface of quantum dots (QDs). Multiple copies of a derivative of thiazole orange, an intercalating dye known to form non-emissive dimers, were conjugated to single-stranded oligonucleotide probes. Dimerization resulted in the formation of H-aggregates where excitonic interactions led to the suppression of fluorescence. The hybridization of the oligonucleotide probe with a complementary target resulted in the enhancement of fluorescence emission as the dimers dissociated and the dyes preferentially intercalated with the duplex. The detection of oligonucleotide targets using this configuration eliminated the need for labeling the target strands, and fluorescence intensity was proportional to the extent of hybridization. In addition, the dye molecules were excited using Foerster Resonance Energy Transfer (FRET) from QD donors, which resulted in improved selectivity and allowed for ratiometric detection. A solution-phase hybridization assay based on similar operational principles has been previously reported, and this new work investigated the advantages offered for this transduction scheme using paper-based solid-phase substrates. QD-probe conjugates were immobilized in sufficient density on the paper matrix to provide for multiple-donor-multiple-acceptor interactions that resulted in a 20-fold enhancement of acceptor emission compared to the solution-based assay, providing a limit of detection of 0.1 pmol. The paper-based assay provided for the reduction of the time needed for sample preparation and data acquisition, demonstrated that transduction was possible in a complex matrix (goat serum) without compromising on the performance observed in buffer solution, and that oligonucleotides generated from standard PCR amplification could be detected.
Collapse
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - Maryam Moazami-Goudarzi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Fasika Kitazume
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| | - George S Espie
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga ON, L5L 1C6, Canada.
| |
Collapse
|
15
|
Fu LM, Wang YN. Detection methods and applications of microfluidic paper-based analytical devices. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Leekrajang M, Sae-Ung P, Vilaivan T, Hoven VP. Filter paper grafted with epoxide-based copolymer brushes for activation-free peptide nucleic acid conjugation and its application for colorimetric DNA detection. Colloids Surf B Biointerfaces 2018; 173:851-859. [PMID: 30551301 DOI: 10.1016/j.colsurfb.2018.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Epoxide-bearing filter paper was first prepared by surface-initiated reversible addition-fragmentation chain transfer (RAFT) copolymerization of glycidyl methacrylate (GMA) and poly(ethylene glycol)methacrylate (PEGMA). Without the need for activation step, the capture peptide nucleic acid (PNA) probes carrying a C-terminal lysine modification can be directly immobilized on the surface-grafted poly[glycidyl methacrylate-ran-poly(ethylene glycol)methacrylate] (P(GMA-ran-PEGMA)) through ring-opening of epoxide groups in the GMA repeating units by amino groups in the PNA's structure. The success of P(GMA-ran-PEGMA) grafting on the filter paper and subsequent PNA immobilization was confirmed by fluorescence microscopy, Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. Colorimetric detection with signal amplification upon DNA hybridization relies on sandwich-hybridization assay employing another biotinylated PNA strand as a reporter probe together with streptavidin-horseradish peroxidase conjugate (SA-HRP) and o-phenylenediamine (OPD) substrate. It was found that increasing ionic strength during the DNA hybridization step by addition of NaCl can increase the signal intensity, which can be visualized by naked eye. The sensing platform showed the best performance in preventing non-specific adsorption from the non-complementary DNA and discriminating between complementary and single-mismatched targets of at least 50 fmol without the requirement for stringent hybridization or washing condition. This superior ability to suppress non-specific adsorption of non-target DNA as well as other non-DNA components may be explained as a result of hydrophilic PEGMA repeating units in the surface-grafted copolymer.
Collapse
Affiliation(s)
- Malinee Leekrajang
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pornpen Sae-Ung
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
17
|
Abstract
Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer competitive analytical performance at relatively low cost.
Collapse
Affiliation(s)
- Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China. and Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| | - M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| |
Collapse
|
18
|
Enzymatic amplification of oligonucleotides in paper substrates. Talanta 2018; 186:568-575. [PMID: 29784403 DOI: 10.1016/j.talanta.2018.02.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/21/2022]
Abstract
Several solution-based methods have recently been adapted for use in paper substrates for enzymatic amplification to increase the number of copies of DNA sequences. There is limited information available about the impact of a paper matrix on DNA amplification by enzymatic processes, and about how to optimize conditions to maximize yields. The work reported herein provides insights about the impact of physicochemical properties of a paper matrix, using nuclease-assisted amplification by exonuclease III and nicking endonuclease Nt. Bbv, and a quantum dot (QD) - based Forster Resonance Energy Transfer (FRET) assay to monitor the extent of amplification. The influence of several properties of paper on amplification efficiency and kinetics were investigated, such as surface adsorption of reactants, and pore size. Additional factors that impact amplification processes such as target length and the packing density of oligonucleotide probes on the nanoparticle surfaces were also studied. The work provides guidance for development of more efficient enzymatic target-recycling DNA amplification methods in paper substrates.
Collapse
|
19
|
Han Y, Noor MO, Sedighi A, Uddayasankar U, Doughan S, Krull UJ. Inorganic Nanoparticles as Donors in Resonance Energy Transfer for Solid-Phase Bioassays and Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12839-12858. [PMID: 28759726 DOI: 10.1021/acs.langmuir.7b01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioassays for the rapid detection and quantification of specific nucleic acids, proteins, and peptides are fundamental tools in many clinical settings. Traditional optical emission methods have focused on the use of molecular dyes as labels to track selective binding interactions and as probes that are sensitive to environmental changes. Such dyes can offer good detection limits based on brightness but typically have broad emission bands and suffer from time-dependent photobleaching. Inorganic nanoparticles such as quantum dots and upconversion nanoparticles are photostable over prolonged exposure to excitation radiation and tend to offer narrow emission bands, providing a greater opportunity for multiwavelength multiplexing. Importantly, in contrast to molecular dyes, nanoparticles offer substantial surface area and can serve as platforms to carry a large number of conjugated molecules. The surface chemistry of inorganic nanoparticles offers both challenges and opportunities for the control of solubility and functionality for selective molecular interactions by the assembly of coatings through coordination chemistry. This report reviews advances in the compositional design and methods of conjugation of inorganic quantum dots and upconversion nanoparticles and the assembly of combinations of nanoparticles to achieve energy exchange. Our interest is the exploration of configurations where the modified nanoparticles can be immobilized to solid substrates for the development of bioassays and biosensors that operate by resonance energy transfer (RET).
Collapse
Affiliation(s)
- Yi Han
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Abootaleb Sedighi
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Uvaraj Uddayasankar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Samer Doughan
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga , Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
20
|
Barreda-García S, Miranda-Castro R, de-Los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal Bioanal Chem 2017; 410:679-693. [PMID: 28932883 PMCID: PMC7079856 DOI: 10.1007/s00216-017-0620-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA) ![]()
Collapse
Affiliation(s)
- Susana Barreda-García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | | | - Arturo J Miranda-Ordieres
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
21
|
Upconversion color tuning in Ce3+-doped LiYF4:Yb3+/Ho3+@LiYF4 nanoparticles towards ratiometric fluorescence detection of chromium(III). J Colloid Interface Sci 2017; 493:10-16. [DOI: 10.1016/j.jcis.2017.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/18/2022]
|
22
|
Doughan S, Uddayasankar U, Peri A, Krull UJ. A paper-based multiplexed resonance energy transfer nucleic acid hybridization assay using a single form of upconversion nanoparticle as donor and three quantum dots as acceptors. Anal Chim Acta 2017; 962:88-96. [DOI: 10.1016/j.aca.2017.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022]
|
23
|
Sedighi A, Krull UJ. Rapid Immobilization of Oligonucleotides at High Density on Semiconductor Quantum Dots and Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13500-13509. [PMID: 27993027 DOI: 10.1021/acs.langmuir.6b03840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oligonucleotide-coated nanoparticles (NPs) have been used in numerous applications such as bioassays, as intracellular probes, and for drug delivery. One challenge that is confronted in the preparation of oligonucleotide-NP conjugates is derived from surface charge because nanoparticles are often stabilized and made water-soluble with a coating of negatively charged capping ligands. Therefore, an electrostatic repulsion is present when attempting to conjugate oligonucleotides. The result is that the conjugation can be a slow process, sometimes requiring 1 to 2 days to equilibrate at the highest surface density. The effect is compounded by electrostatic repulsion between neighboring oligonucleotide strands on the NP surfaces, which tends to lower the surface density. Herein, we report a novel method that enables conjugation in less than 1 min with a surface density of oligonucleotides up to the theoretical physical limit of occupancy. Negatively charged NPs are first adsorbed onto the surface of positively charged magnetic beads (MBs) to create MB-NP conjugates. Oligonucleotides are subsequently electrostatically adsorbed onto the MB surfaces when added to a suspension of MB-NP conjugates. This creates an oligonucleotide concentration 105 to 106 greater than in bulk solution in the vicinity of the nanoparticles, resulting in the promotion of the kinetics by over 1000-fold and achieving the maximum density possible for the conjugation reaction.
Collapse
Affiliation(s)
- Abootaleb Sedighi
- Chemical and Physical Sciences, Univeristy of Toronto Mississauga , Davis Building, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| | - Ulrich J Krull
- Chemical and Physical Sciences, Univeristy of Toronto Mississauga , Davis Building, 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
24
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
25
|
Shahmuradyan A, Krull UJ. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization. Anal Chem 2016; 88:3186-93. [DOI: 10.1021/acs.analchem.5b04536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anna Shahmuradyan
- Chemical Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ulrich J. Krull
- Chemical Sensors Group, Department
of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
26
|
Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem 2016; 408:2913-25. [DOI: 10.1007/s00216-015-9300-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
27
|
A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer. NANOMATERIALS 2015; 5:1556-1570. [PMID: 28347081 PMCID: PMC5304784 DOI: 10.3390/nano5041556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/12/2015] [Accepted: 09/22/2015] [Indexed: 12/05/2022]
Abstract
Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.
Collapse
|