1
|
Gao Y, Wang J, Mu X, Liu B, Xia M, Wang F, Tong Z. Carbon quantum dots in spectrofluorimetric analysis: A comprehensive review of synthesis, mechanisms and multifunctional applications. Talanta 2025; 293:128066. [PMID: 40194462 DOI: 10.1016/j.talanta.2025.128066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Carbon quantum dots (CQDs), as a representative nanomaterial, have demonstrated promising applications in fluorescence analysis owing to their unique optical properties, low cytotoxicity and exceptional biocompatibility. This review systematically summarizes recent advances in synthesis strategies, detection mechanisms and applications of CQDs for sensing metal ions (e.g., Hg2+, Fe3+, Cu2+), small molecules (e.g., biomolecules, pharmaceuticals, azo dyes) and proteins. Hybridization of CQDs with functional materials has been shown to significantly enhance their photoluminescence properties while optimizing detection sensitivity and selectivity. The article critically examines fundamental detection mechanisms, especially fluorescence quenching and further outlines design strategies for fluorescence probes based on "on-off" switching or ratio signaling. Moreover, current challenges are analyzed, such as the need for synthetic protocol standardization, in-depth exploration of heteroatom-doped CQDs, expansion of detectable analytes and rational design of fluorescence turn-on probes. Future prospects in environmental monitoring, biomedical diagnostics and pharmaceutical analysis are also highlighted. This comprehensive review offers critical insights to guide the rational design and application of advanced CQD-based hybrid systems.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
2
|
Baruah DJ, Thakur A, Roy E, Roy K, Basak S, Neog D, Bora HK, Konwar R, Chaturvedi V, Shelke MV, Das MR. Atomically Dispersed Manganese on Graphene Nanosheets as Biocompatible Nanozyme for Glutathione Detection in Liver Tissue Lysate Using Microfluidic Paper-based Analytical Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47902-47920. [PMID: 37812745 DOI: 10.1021/acsami.3c08762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (μPADs). GSH is successfully detected on the fabricated μPADs coated with only 6.0 μg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 μM with a limit of detection of 1.23 μM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using μPADs, which paves the way to develop μPADs for point-of-care testing.
Collapse
Affiliation(s)
- Diksha J Baruah
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Thakur
- Coal and Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Esha Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kallol Roy
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumanjita Basak
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dipankar Neog
- Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himangsu K Bora
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rituraj Konwar
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikash Chaturvedi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manjusha V Shelke
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash R Das
- Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Zhang CL, Liu C, Ding YW, Wang HT, Nie SR, Zhang YP. A novel fluorescent probe based on naphthimide for H 2S identification and application. Anal Biochem 2023; 677:115232. [PMID: 37481195 DOI: 10.1016/j.ab.2023.115232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023]
Abstract
In view of the superior chemical activity of selenoether bond (-Se-) and the excellent optical properties of naphthimide, a novel fluorescent probe (NapSe) with near-rectangular structure, which contains double naphthimide fluorophores linked by selenoether bond, is designed for specific fluorescence detection of hydrogen sulfide (H2S). NapSe has excellent optical properties: super large Stokes Shift (190 nm) and good stability in a wide pH range. The selectivity of NapSe fluorescence detection of H2S is high, and displays excellent "turn-on" phenomenon and strong anti-interference. And the fluorescence intensity increased obviously, reaching 42 times. The time response of probe NapSe is very rapid (3 min) compared with other fluorescence probes that respond to H2S. It shows high sensitivity by calculating the detection limit (LOD) as low as 5.4 μM. Notably, the identification of H2S by probe NapSe has been successfully applied to the detection of test paper and the detection of exogenous and endogenous fluorescence imaging of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Wei Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Hai-Tao Wang
- Dalian No.24 High School, Dalian, 116001, China.
| | - Shi-Ru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Peng Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
4
|
Kakoti A, Borah J, Narayan Hazarika U, Protim Bharadwaj S, Dutta P, Khakhlary P. Solvatochromism as a tool to visually recognise wide range of commonly used solvents and inexpensive dye based optical sensor for H2O, D2O and H2O2. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Berthou M, Clarot I, Gouyon J, Steyer D, Monat MA, Boudier A, Pallotta A. Thiol sensing: From current methods to nanoscale contribution. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Berthou M, Pallotta A, Beurton J, Chaigneau T, Athanassiou A, Marcic C, Marchioni E, Boudier A, Clarot I. Gold nanostructured membranes to concentrate low molecular weight thiols, a proof of concept study. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123244. [DOI: 10.1016/j.jchromb.2022.123244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 01/02/2023]
|
7
|
Huang Z, Yu S, Jian M, Weng Z, Deng H, Peng H, Chen W. Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform. Anal Chem 2022; 94:2341-2347. [PMID: 35049295 DOI: 10.1021/acs.analchem.1c05198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluster (AuNC) probe-based ECL platform. The system utilizes GSH as an efficient etching agent to turn on the MnO2/AuNC-based ECL nanoswitch platform. This method successfully achieves an ultrasensitive detection of GSH, which significantly outperformed other sensors. Based on the above excellent results, GSH-related biological assays have been further established by taking ATP as a model. Combined with the high catalytic oxidation ability of DNAzyme, this ECL sensor can realize ATP assay as low as 1.4 fmol without other complicated exonuclease amplification strategies. Thus, we successfully achieved an ultrahigh sensitivity, extremely wide dynamic range, great simplicity, and strong anti-interference detection of ATP. In addition, the actual sample detection for GSH and ATP exhibits satisfactory results. We believe that our proposed high-performance platform will provide more possibilities for the detection of other GSH-related substances and show great prospect in disease diagnosis and biochemical research.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Sunxing Yu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Meili Jian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
8
|
Guo Z, Wei H, Yang S, Hu Z, Li G, Guo D. Synthesis and fluorescent properties of europium (III) complexes based on novel coumarin derivatives. LUMINESCENCE 2022; 37:588-597. [PMID: 34997671 DOI: 10.1002/bio.4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
Four novel coumarin fluorescence small-molecules were successfully prepared and validated by 1 H NMR, 13 C NMR, and MS. Their corresponding europium (III) complexes were synthesized and characterized. The ligand can emit green fluorescence in solutions, and the best concentration was 40μmol/L. The emission peak of ligand has a red-shift with the increase of concentration and solvent polarity. And the effect of various substituents in ligand was ordered using fluorescence intensity as standard: -NO2 > -Cl > -OCH3 > -OH. The order of fluorescence quantum yield is in line with the order of fluorescence intensity. The title europium complexes exhibit red fluorescence of Eu3+ with good thermal stability. The effect of various substituents in ligand on the fluorescence intensity of title europium complexes was also consistent with the above results. This suggests that the prepared coumarins fluorescence small-molecules and their corresponding europium complexes have potential application prospects in the field of optical materials.
Collapse
Affiliation(s)
- Zuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Huang Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuaishuai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhongqian Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Guizhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dongcai Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
9
|
Ma J, Xu Y, Wang Y, Li J, Liu L, Si W, Hou J, Zhang Z. Piperazine-Coumarin based fluorescence probe with enhanced brightness and solubility for bio-thiol detection and esophageal carcinoma diagnosis. Bioorg Chem 2021; 116:105391. [PMID: 34607279 DOI: 10.1016/j.bioorg.2021.105391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/21/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
The development of novel fluorescent dyes for bio-thiol is of great importance in biological, clinical and pharmaceutical sciences. Given the importance of bio-thiol anticipating in numerous physiological processes, there is a great need to construct fluorescent biosensors with high quality to detect them. Fluorophores, especially those used in bio-system, usually require high-quality properties such as high brightness, good water solubility, bio-compatible and photostability. Herein, we reported a novel fluorescent probe based on piperazine-coumarin scaffold with enhanced brightness and solubility. To further demonstrate the potential clinical applications, we performed living cell fluorescence image and human esophageal carcinoma diagnosis. The result indicated that we were able to distinguish pathological tissue from normal tissue by applying this probe. Thus, we hope this design will be helpful to develop high-quality fluorophores for clinical diagnosis.
Collapse
Affiliation(s)
- Junyan Ma
- State Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson 29634, SC, United States.
| | - Yaoyu Xu
- State Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaxin Wang
- State Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Junkuo Li
- Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan 455000, China
| | - Lin Liu
- State Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Weijie Si
- State Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhenxing Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Park SW, Kim TE, Jung YK. Glutathione-decorated fluorescent carbon quantum dots for sensitive and selective detection of levodopa. Anal Chim Acta 2021; 1165:338513. [PMID: 33975692 DOI: 10.1016/j.aca.2021.338513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Levodopa has been a standard drug for treating Parkinson's disease since the 1960s, but it has caused many side effects such as wearing-off, motor fluctuation, and dystonia. In this work, we developed glutathione-conjugated carbon quantum dots (GSH-CQDs) as a novel fluorescent sensor for sensitive and selective detection of levodopa. The GSH-CQDs were prepared by EDC/NHS coupling reaction of glutathione (GSH) with amine-functionalized CQDs (N-CQDs) synthesized using meta-phenylenediamine and ethylenediamine. The synthesized GSH-CQDs emitted bright green fluorescence with a high quantum yield (QY) of 22.42 ± 6.88%. However, upon the addition of levodopa to GSH-CQDs under alkaline conditions, the fluorescence of GSH-CQDs was quenched. Since levodopa is converted to dopaquinone in an alkaline environment, it is presumed that thiol groups of GHS-CQDs form covalent bonds with dopaquinone, causing fluorescence quenching through photoinduced electron transfer. Therefore, as the concentration of levodopa increased, the fluorescence intensity of GSH-CQDs was gradually decreased. Under optimal conditions, a linear response was observed in the range of 0.05-1 μM, and limit of detection (LOD) was determined to be 0.057 μM. The GSH-CQDs exhibited high specificity to levodopa over other non-target biological substances, quinone derivatives, and Parkinson's medications. Furthermore, the capability of this GSH-CQDs sensor for monitoring levodopa in human serum were validated with excellent precision and recovery rates of 100.20-103.33%.
Collapse
Affiliation(s)
- Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Tae Eun Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea; School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea.
| |
Collapse
|
11
|
Li H, Yang Y, Qi X, Zhou X, Ren WX, Deng M, Wu J, Lü M, Liang S, Teichmann AT. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples. Anal Chim Acta 2020; 1117:18-24. [PMID: 32408950 DOI: 10.1016/j.aca.2020.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to develop a novel and practical fluorescent method for GSH detection in complex biological samples. To this end, a series of coumarin-based fluorescent probes was designed and synthesized using various aliphatic halogens as the sensing group. By using a new evaluation method of GSH/Cys/Hcy coexisting conditions, the probe with chloropropionate (CBF3) showed a high selectivity, excellent sensitivity, good stability for GSH detection. The reaction mechanism is proposed as nucleophilic substitution/cyclization and intramolecular charge transfer (ICT), which was confirmed by LC-MS and NMR analysis, as well as density functional theory calculations. In addition, CBF3 was demonstrated to be competent not only for the quantitative detection of GSH in real serum samples, but also for sensing GSH changes in different oxidative stress models in living cells and nematodes. This study showed a practical strategy for constructing GSH-specific fluorescent probes, and provided a sensitive tool for real-time sensing of GSH in real biological samples. The findings would greatly facilitate further investigations on GSH-associated clinical diagnosis and biomedical studies.
Collapse
Affiliation(s)
- Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youzhe Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaogang Zhou
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Wen Xiu Ren
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianming Wu
- The Pharmacy School of Southwest Medical University, Luzhou, China.
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China; The Pharmacy School of Southwest Medical University, Luzhou, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China; Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
12
|
Pang HH, Ke YC, Li NS, Chen YT, Huang CY, Wei KC, Yang HW. A new lateral flow plasmonic biosensor based on gold-viral biomineralized nanozyme for on-site intracellular glutathione detection to evaluate drug-resistance level. Biosens Bioelectron 2020; 165:112325. [PMID: 32729474 DOI: 10.1016/j.bios.2020.112325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) cells would have abnormal redox status due to bio-thiols, like glutathione (GSH), which constitute the most crucial defense system that protects cells from therapeutic agents. Current strategies for GSH detection often require sophisticated instruments that may not be available in laboratories with fewer resources. Here, we circumvent this problem by introducing a lateral flow plasmonic biosensor (LFPB) based on gold-viral biomineralized nanoclusters (AuVCs) as nanozymes that enables the detection of a few molecules with the naked eye and quantified by an auto-analysis software. The GSH level controls the growth of gold nanoparticles (AuNPs) and generates coloured patterns with distinct tonality, which are then auto-analyzed to calculate the GSH concentrations by smartphone with an auto-analysis software. Under the optimized conditions, grayscale value plotted against GSH concentration exhibited a linear relationship within the range of 25-500 μM with a limit of detection (LoD) of 9.80 μM and highly positive correlation between detected GSH level and TMZ drug-resistance level in GBM cells. This excellent property allowed our approach to be used for on-site determination of GSH levels in a rapid (i.e., within 30 min), simple (i.e., auto-analysis software), and cost-effective process (i.e., instrument-free) for cancer precision therapy.
Collapse
Affiliation(s)
- Hao-Han Pang
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Yong-Chen Ke
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Nan-Si Li
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Ying-Tzu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, 23652, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City, 23652, Taiwan.
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
13
|
Cytotoxicity and reactivity of a redox active 1,4-quinone-pyrazole compound and its Ru(II)-p-cymene complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Liang F, Jiao S, Jin D, Dong L, Lin S, Song D, Ma P. A novel near-infrared fluorescent probe for the dynamic monitoring of the concentration of glutathione in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117403. [PMID: 31344582 DOI: 10.1016/j.saa.2019.117403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, a water-soluble, near-infrared fluorescent probe (EQR-S) was designed for the measurement of the glutathione (GSH) concentration. Responses of different interfering substances to the developed probe were investigated, and the luminescence mechanism was examined by theoretical calculations. Results revealed that EQR-S can be applied for the rapid, sensitive determination of the GSH concentration with a detection limit of 69 nM. Based on the above advantages, EQR-S was successfully applied to investigate the fluctuation in the GSH concentration of living cells under high-temperature stress.
Collapse
Affiliation(s)
- Fanghui Liang
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Shan Jiao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Danhong Jin
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Lidan Dong
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Shourui Lin
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
15
|
Yu X, Wang K, Xing M, Sun Y, Li M, Sun Y, Cao D, Zhao S, Liu Z. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative. Anal Chim Acta 2019; 1082:146-151. [PMID: 31472703 DOI: 10.1016/j.aca.2019.07.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Glutathione (GSH) is an important antioxygen and free radical scavenger in the organism. Level of GSH in vivo is associated with many diseases and specific recognition for GSH is very important. Here, a pyrene chalcone derivative 1 1-(2-hydroxyphenyl)-3-(1-pyrenyl)-2-propen-1-one as specific probe for GSH was developed. The probe can give rise to rapid blue fluorescence enhancement for GSH based on Michael addition reaction in pure PBS solution with high sensitivity, fast response rate and high specificity. The compound also can be applied for GSH detection in HeLa cell. Simultaneously, the compound exhibits blue fluorescence emission enhancement in methanol-water (1:1, v/v) solution with fluorescence quantum yield being 0.45 due to the competition of water molecules for hydrogen bonds between hydroxyl and carbonyl and the formation of structurally regular rodlike crystals, which allows regulating fluorescence emission by different solvent condition.
Collapse
Affiliation(s)
- Xueying Yu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Kangnan Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Miaomiao Xing
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yanan Sun
- Shandong Vocational College of Industry, Zibo, 256414, Shandong, China
| | - Mengyuan Li
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
16
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev 2019; 119:10403-10519. [PMID: 31314507 DOI: 10.1021/acs.chemrev.9b00145] [Citation(s) in RCA: 701] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coumarins are a very large family of compounds containing the unique 2H-chromen-2-one motif, as it is known according to IUPAC nomenclature. Coumarin derivatives are widely found in nature, especially in plants and are constituents of several essential oils. Up to now, thousands of coumarin derivatives have been isolated from nature or produced by chemists. More recently, the coumarin platform has been widely adopted in the design of small-molecule fluorescent chemosensors because of its excellent biocompatibility, strong and stable fluorescence emission, and good structural flexibility. This scaffold has found wide applications in the development of fluorescent chemosensors in the fields of molecular recognition, molecular imaging, bioorganic chemistry, analytical chemistry, materials chemistry, as well as in the biology and medical science communities. This review focuses on the important progress of coumarin-based small-molecule fluorescent chemosensors during the period of 2012-2018. This comprehensive and critical review may facilitate the development of more powerful fluorescent chemosensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Duxia Cao
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Peter Verwilst
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Seyoung Koo
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | | | - Jong Seung Kim
- Department of Chemistry , Korea University , Seoul 02841 , Korea
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , China.,School of Chemistry and Chemical Engineering , Guangxi University , Nanning , Guangxi 530004 , P. R. China
| |
Collapse
|
18
|
Luo W, Xue H, Ma J, Wang L, Liu W. Molecular engineering of a colorimetric two-photon fluorescent probe for visualizing H 2S level in lysosome and tumor. Anal Chim Acta 2019; 1077:273-280. [PMID: 31307719 DOI: 10.1016/j.aca.2019.05.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
As a multifunctional signaling molecule, hydrogen sulfide (H2S) plays an essential role in diverse physiological and pathological processes. The two-photon fluorescence probes detecting H2S selectively in vivo could be useful tools to better study the mechanism of diseases. Then, an efficient two-photon lysosome-specific probe 1 has been developed to detect endogenous H2S in living cells and mice. Probe 1 displays excellent properties with 28-fold fluorescence enhancement, marked color changes in naked-eye and fluorescence, high selectivity and sensitivity, and low detection limit (0.22 μM) to H2S. These remarkable properties of probe 1 enable its practical applications in detecting H2S in environment (wastewater) and food (beer). Moreover, as a two-photon probe under near infrared excitation at 790 nm, probe 1 can monitor the level changes of endogenous H2S of lysosome and tumor in living system with good membrane permeability and high imaging resolution. Specially, the probe detecting H2S distribution in lysosome could provide more evidences to explain the association of target-organelle and H2S.
Collapse
Affiliation(s)
- Weifang Luo
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Hanyue Xue
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Jingjing Ma
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
19
|
Huang S, Wu Y, Zeng F, Chen J, Wu S. A turn-on fluorescence probe based on aggregation-induced emission for leucine aminopeptidase in living cells and tumor tissue. Anal Chim Acta 2018; 1031:169-177. [PMID: 30119736 DOI: 10.1016/j.aca.2018.05.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Abnormally-expressed leucine aminopeptidase (LAP) is associated with diverse physiological and pathological disorders; hence developing a highly selective and sensitive detection system for LAP is of great significance. Herein, a fluorescent light-up system with aggregation-induced emission (AIE) characteristic, (DPA-TPE-Leu) has been developed for detecting LAP, in which the recognition unit l-leucine amide group also acts as the hydrophilic moiety. Upon LAP-triggered enzymatic reaction, l-leucine amide moiety is cleaved from the probe molecule, resulting in the formation and aggregation of the hydrophobic reaction product (DPE-TPE-OH) with AIE effect and thus giving out the turn-on green fluorescence. The system features excellent photostability, large Stokes shift (194 nm), good water solubility, high sensitivity with the detection limit of 0.16 U L-1, favorable specificity and low cytotoxicity. It has been effectively utilized in fluorescent imaging of endogenous LAP in living cells, and also successfully applied for fluorescent imaging of HepG2 xenograft tumor. Such a fluorescent assay could provide a convenient and sensitive method for detecting LAP activity and might aid in the auxiliary diagnosis of hepatocellular carcinoma and related pathological analysis in biopsy.
Collapse
Affiliation(s)
- Shuailing Huang
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinglong Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junjie Chen
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
20
|
Song H, Zhou Y, Qu H, Xu C, Wang X, Liu X, Zhang Q, Peng X. A Novel AIE Plus ESIPT Fluorescent Probe with a Large Stokes Shift for Cysteine and Homocysteine: Application in Cell Imaging and Portable Kit. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04643] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Haohan Song
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Haonan Qu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Chenggong Xu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qingyou Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
21
|
Reactive Blue 4 as a Single Colorimetric Chemosensor for Sequential Determination of Multiple Analytes with Different Optical Responses in Aqueous Media: Cu 2+-Cysteine Using a Metal Ion Displacement and Cu 2+-Arginine Through the Host-Guest Interaction. Appl Biochem Biotechnol 2018; 187:913-937. [PMID: 30105545 DOI: 10.1007/s12010-018-2796-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
In the current study, we reported a novel label-free and facile colorimetric approach for the sequential detection of copper ion (Cu2+), L-arginine (Arg), and L-cysteine (Cys) in the H2O (10.0 mmol L-1 HEPES buffer solution, pH 7.0) using Reactive Blue 4 (RB4). First, the presence of Cu2+ led to a naked-eye color and spectral changes according to the binding site-signaling subunit approach. Then, the RB4-Cu2+ complex was successfully applied for Cys and Arg through different recognition pathways. The optical signals for Arg were observed due to its association involving the amino group, as well as the participation of the carboxylate group in a bidentate form to the complex, while selective behavior for Cys was explained by a metal displacement mechanism. The limits of detection for Cu2+, Arg, and Cys were calculated to be 1.96, 1.06, and 1.33 μmol L-1, respectively. It could also be employed for the determination of three analytes in environmental, biological, and pharmaceutical samples. Importantly, the test strips based on RB4-Cu2+ complex could be used as a solid-state sensor for the detection of Cys and Arg. In addition, NAND and IMPLICATION molecular logic gates were obtained by using chemical inputs and UV-Vis absorbance signal as the output. Graphical Abstract.
Collapse
|
22
|
Lee S, Li J, Zhou X, Yin J, Yoon J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wang Y, Liu Y, Ding F, Zhu X, Yang L, Zou P, Rao H, Zhao Q, Wang X. Colorimetric determination of glutathione in human serum and cell lines by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite. Anal Bioanal Chem 2018; 410:4805-4813. [PMID: 29882077 DOI: 10.1007/s00216-018-1117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 01/18/2023]
Abstract
In this study, we developed a simple colorimetric approach to detect glutathione (GSH). The proposed approach is based on the ability of CuS-PDA-Au composite material to catalytically oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB to induce a blue color with an absorption peak centered at 652 nm. However, the introduction of GSH can result in a decrease in oxidized TMB; similarly, it can combine with Au nanoparticles (Au NPs) on the surface of CuS-PDA-Au composite material. Both approaches can result in a fading blue color and a reduction of the absorbance at 652 nm. Based on this above, we proposed a technique to detect GSH quantitatively and qualitatively through UV-Vis spectroscopy and naked eye, respectively. This approach demonstrates a low detection limit of 0.42 μM with a broad detection range of 5 × 10-7-1 × 10-4 M with the assistance of UV-Vis spectroscopy. More importantly, this approach is convenient and rapid. This method was successfully applied to GSH detection in human serum and cell lines. Graphical abstract A colorimetric approach has been developed by exploiting the peroxidase-like activity of CuS-polydopamine-Au composite for sensitive glutathione detection.
Collapse
Affiliation(s)
- Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China
| | - Yaqin Liu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China
| | - Fang Ding
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyan Zhu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China
| | - Li Yang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China.
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
24
|
Dias GG, King A, de Moliner F, Vendrell M, da Silva Júnior EN. Quinone-based fluorophores for imaging biological processes. Chem Soc Rev 2018; 47:12-27. [PMID: 29099127 DOI: 10.1039/c7cs00553a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quinones are privileged chemical structures playing crucial roles as redox and alkylating agents in a wide range of processes in cells. The broad functional array of quinones has prompted the development of new chemical approaches, including C-H bond activation and asymmetric reactions, to generate probes for examining their activity by means of fluorescence imaging. This tutorial review covers recent advances in the design, synthesis and applications of quinone-based fluorescent agents for visualizing specific processes in multiple biological systems, from cells to tissues and complex organisms in vivo.
Collapse
Affiliation(s)
- Gleiston G Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | | | | | | | | |
Collapse
|
25
|
Cheng M, Yao C, Cao Y, Wang Q, Pan Y, Jiang J, Wang L. 4-Methylcoumarin-bridged fluorescent responsive cryptand: from [2+2] photodimerization to supramolecular polymer. Chem Commun (Camb) 2018; 52:8715-8. [PMID: 27331768 DOI: 10.1039/c6cc03624d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorescent responsive BMP32C10-based cryptand host was successfully synthesized by introducing a 4-methylcoumarin group to the third arm of the cryptand. The cryptand was able to undergo [2+2] photodimerization on UV irradiation (λ = 365 nm) and, based on the photodimerization and host-guest interaction, a new supramolecular polymer was constructed in a convenient manner.
Collapse
Affiliation(s)
- Ming Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chenhao Yao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yihan Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qi Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
26
|
Wu WN, Wu H, Wang Y, Mao XJ, Zhao XL, Xu ZQ, Fan YC, Xu ZH. A highly sensitive and selective off-on fluorescent chemosensor for hydrazine based on coumarin β-diketone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:80-84. [PMID: 28692871 DOI: 10.1016/j.saa.2017.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
A coumarin-based sensor C1, namely 3-acetoacetylcoumarin was designed, synthesized and applied for hydrazine detection. Hydrazinolysis of the chemosensor gives a fluorescent coumarin-pyrazole product C1-N2H4 [3-(3-methyl-1H-pyrazol-5-yl)coumarin], and thus resulting in a prominent fluorescence off-on response toward hydrazine under physiological conditions. The probe is highly selective toward hydrazine over cations, anions and other biologically/environmentally abundant analytes. The detection limit of the probe is 3.2ppb. The sensing mechanism was supported by 1H NMR, IR, MS and DFT calculation. The application of the fluorescent probe in monitoring intracellular hydrazine in glioma cell line U251 was also demonstrated.
Collapse
Affiliation(s)
- Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Hao Wu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xian-Jie Mao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Zhou-Qing Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, School of Chemistry and Chemical Engineering, Xuchang University, 461000, PR China.
| |
Collapse
|
27
|
Wang L, Qu G, Gao Y, Su L, Ye Q, Jiang F, Zhao B, Miao J. A small molecule targeting glutathione activates Nrf2 and inhibits cancer cell growth through promoting Keap-1 S-glutathionylation and inducing apoptosis. RSC Adv 2018; 8:792-804. [PMID: 35538996 PMCID: PMC9076930 DOI: 10.1039/c7ra11935f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
The level of glutathione (GSH) is increased in many cancer cells. Consuming intracellular GSH by chemical small molecules that specifically target GSH is a new strategy to treat cancer. Recently, we synthesized and proved that a new compound 2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)cyclohexa-2,5-diene-1,4-dione (PBQC) could target to and consume intracellular GSH specifically, but, it is not clear if PBQC can affect cancer cell growth and the activity of the nuclear factor-erythroid 2-related factor 2 (Nrf2) which is a key factor involved in regulation of cancer cell growth. In this study, we addressed these questions. We found that PBQC suppressed cancer cell growth through increasing the activity of Nrf2, while it did not inhibit normal vascular endothelial cell growth. Furthermore, we demonstrated that PBQC can cause Keap-1 protein S-glutathionylation and promote Nrf2 nuclear translocation as well as the expression of pro-apoptosis genes. As a result, the cancer cells underwent apoptosis. Here, we provide a new Nrf2 activator, PBQC that can promote the expressions of pro-apoptosis genes downstream Nrf2. The data suggest that PBQC is a potential lead-compound for development of new anti-cancer drugs. The level of glutathione (GSH) is increased in many cancer cells.![]()
Collapse
Affiliation(s)
- LiHong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - GuoJing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - YuanDi Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Qing Ye
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education
- Chinese Ministry of Health
- Qilu Hospital
- Shandong University
| | - Fan Jiang
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education
- Chinese Ministry of Health
- Qilu Hospital
- Shandong University
| | - BaoXiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
28
|
Li GY, Han KL. The sensing mechanism studies of the fluorescent probes with electronically excited state calculations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1351] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guang-Yue Li
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
- College of Chemical Engineering; North China University of Science and Technology; Tangshan China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| |
Collapse
|
29
|
Heng S, Zhang X, Pei J, Abell AD. A Rationally Designed Reversible 'Turn-Off' Sensor for Glutathione. BIOSENSORS-BASEL 2017; 7:bios7030036. [PMID: 28878194 PMCID: PMC5618042 DOI: 10.3390/bios7030036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence (‘turn-on’) once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based ‘turn-off’ probe (1) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence (‘turn-off’). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis.
Collapse
Affiliation(s)
- Sabrina Heng
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Xiaozhou Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Jinxin Pei
- Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing, Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
30
|
Nie J, Li N, Ni Z, Zhao Y, Zhang L. A sensitive tetraphenylethene-based fluorescent probe for Zn 2+ ion involving ESIPT and CHEF processes. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: A promising powerful tool for identifying cancer cells. Anal Chim Acta 2017; 967:64-69. [PMID: 28390487 DOI: 10.1016/j.aca.2017.02.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/19/2017] [Accepted: 02/24/2017] [Indexed: 01/30/2023]
Abstract
Glutathione (GSH), the most abundant biothiol in cells, not only plays a pivotal role in protective and detoxifying functions of the cell, but also serves as a very important mediator in many cellular functions. Especially, the difference of GSH level between cancer cells and normal cells is regarded as one of most important physiological parameters for cancer diagnosis. It is thereby extremely necessary to develop a simple, sensitive, and reliable analytical method for detection of GSH in cells. On the basis of the inhibition effect of GSH on the peroxidase-like activity of GSH stabilized gold nanoclusters, here a novel and facile strategy for colorimetric detection of cellular GSH level was well established. In this sensing system, GSH can effectively inhibit the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue colored product. Under the optimized conditions, the absorbance at 652 nm against GSH concentration shows a linear relationship within a range from 2 to 25 μM with detection limit of 420 nM. This excellent property allows our approach to be used to accurately evaluate the cellular GSH levels, and it is revealed that the overall GSH level in cancer cells was much higher than that in normal cells. The presented assay will enable a powerful tool for identifying cancer cells in a simple manner for biomedical diagnosis associated with GSH.
Collapse
|
32
|
Sanskriti I, Upadhyay KK. Cysteine, homocysteine and glutathione guided hierarchical self-assemblies of spherical silver nanoparticles paving the way for their naked eye discrimination in human serum. NEW J CHEM 2017. [DOI: 10.1039/c7nj00011a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we unravel a new strategy of analyte guided self-assembly of a silver nanoprobe into three hierarchical alignments viz. flowers, thorns and petals which led to chromogenic discrimination of cysteine, homocysteine and glutathione.
Collapse
Affiliation(s)
- Isha Sanskriti
- Department of Chemistry (Centre of Advanced Study)
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - K. K. Upadhyay
- Department of Chemistry (Centre of Advanced Study)
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
33
|
Xiao JW, Zhu WJ, Sun R, Xu YJ, Ge JF. Evaluation of electron or charge transfer processes between chromenylium-based fluorophores and protonated–deprotonated aniline. RSC Adv 2016. [DOI: 10.1039/c6ra19831g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET and ICT processes in chromenylium hybrid fluorescent dyes.
Collapse
Affiliation(s)
- Jin-Wei Xiao
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Wei-Jin Zhu
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection
- Medicine College of Soochow University
- Suzhou 215123
- China
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| |
Collapse
|