1
|
Alluhayb AH, Severance C, Hendry-Hofer T, Bebarta VS, Logue BA. Concurrent determination of cyanide and thiocyanate in human and swine antemortem and postmortem blood by high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023; 415:6595-6609. [PMID: 37712953 DOI: 10.1007/s00216-023-04939-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Cyanide (in the form of cyanide anion (CN-) or hydrogen cyanide (HCN), inclusively represented as CN) can be a rapidly acting and deadly poison, but it is also a common chemical component of a variety of natural and anthropogenic substances. The main mechanism of acute CN toxicity is based on blocking terminal electron transfer by inhibiting cytochrome c oxidase, resulting in cellular hypoxia, cytotoxic anoxia, and potential death. Due to the well-established link between blood CN concentrations and the manifestation of symptoms, the determination of blood concentration of CN, along with the major metabolite, thiocyanate (SCN-), is critical. Because currently there is no method of analysis available for the simultaneous detection of CN and SCN- from blood, a sensitive method for the simultaneous analysis of CN and SCN- from human ante- and postmortem blood via liquid chromatography-tandem MS analysis was developed. For this method, sample preparation for CN involved active microdiffusion with subsequent chemical modification using naphthalene-2,3-dicarboxaldehyde (NDA) and taurine (i.e., the capture solution). Preparation for SCN- was accomplished via protein precipitation and monobromobimane (MBB) modification. The method produced good sensitivity for CN with antemortem limit of detection (LODs) of 219 nM and 605 nM for CN and SCN-, respectively, and postmortem LODs of 352 nM and 509 nM. The dynamic ranges of the method were 5-500 µM and 10-500 µM in ante- and postmortem blood, respectively. In addition, the method produced good accuracy (100 ± 15%) and precision (≤ 15.2% relative standard deviation). The method was able to detect elevated levels of CN and SCN- in both antemortem (N = 5) and postmortem (N = 4) blood samples from CN-exposed swine compared to nonexposed swine.
Collapse
Affiliation(s)
- Abdullah H Alluhayb
- Department of Chemistry and Biochemistry, South Dakota State University, 1055 Campanile Avenue, Box 2202, Brookings, SD, 57007, USA
| | - Carter Severance
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Tara Hendry-Hofer
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Center for COMBAT Research, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Brian A Logue
- Department of Chemistry and Biochemistry, South Dakota State University, 1055 Campanile Avenue, Box 2202, Brookings, SD, 57007, USA.
| |
Collapse
|
2
|
Li X, Ji Y, Zu T, Huang X, Wang J, Cao Y, Cui Z. Simultaneous determination of cyanide and thiocyanate in milk by GC-MS/MS using cetyltrimethylammonium bromide as both phase transfer catalyst and protein precipitant. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1025-1034. [PMID: 37410937 DOI: 10.1080/19440049.2023.2227742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
A method was developed for simultaneous determination of cyanide and thiocyanate in milk by gas chromatography-tandem quadrupole mass spectrometry (GC-MS/MS). Cyanide and thiocyanate were derivatized with pentafluorobenzyl bromide (PFBBr) as PFB-CN and PFB-SCN, respectively. Cetyltrimethylammonium bromide (CTAB) was employed both as a phase transfer catalyst and a protein precipitant in the sample pretreatment, which facilitates the separation of the organic and aqueous phases, and greatly simplifies the pretreatment procedures to achieve simultaneous and rapid determination of cyanide and thiocyanate. Under the optimized conditions, the limits of detection (LODs) of cyanide and thiocyanate in milk were 0.006 mg/kg and 0.015 mg/kg, and the spiked recoveries ranged from 90.1% to 98.2% and from 91.8% to 98.9% with relative standard deviations (RSDs) less than 18.9% and 15.2%, respectively. The proposed method was validated as a simple, fast and highly sensitive method for the determination of cyanide and thiocyanate in milk.
Collapse
Affiliation(s)
- Xing Li
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
- Imported Science and Technology (Beijing) Co., Ltd, Beijing, P.R. China
| | - Yongyan Ji
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
- Department of Environmental Science & Engineering, Fudan University, Shanghai, P.R. China
| | - Tiehong Zu
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Xuezhe Huang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Jing Wang
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Yanzhong Cao
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| | - Zongyan Cui
- Technology Center of Qinhuangdao Customs, Qinhuangdao, P.R. China
| |
Collapse
|
3
|
Tseng WB, Rau JY, Chiou HC, Tseng WL. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils. ENVIRONMENTAL RESEARCH 2022; 207:112144. [PMID: 34619120 DOI: 10.1016/j.envres.2021.112144] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The modification of protein-stabilized gold nanoclusters with fluorophores has been intensively applied for the ratiometric detection of biomolecules, metal ions, and anions. This study developed a straightforward strategy to prepare lysozyme nanoparticle-encapsulated gold nanoclusters (LysNP-AuNCs) as a dual-emission probe for the ratiometric sensing of cyanide through fluorescence resonance energy transfer (FRET) without the conjugation of additional fluorophores. The reduction of gold ion precursors with lysozyme generated lysozyme-stabilized AuNCs under an alkaline pH, which were demonstrated to self-assemble into nanoaggregates during the formation of AuNCs. The aggregated lysozyme molecules on the AuNCs were treated with glutaraldehyde, triggering the conversion of the aggregated lysozymes into blue-emitting lysozyme nanoparticles. As a result, the AuNCs were well distributed inside a single lysozyme nanoparticle, as demonstrated by transmission electron microscopy. The presence of cyanide triggered the etching of the AuNCs in the LysNP-AuNCs, leading to the suppression of FRET from lysozyme nanoparticle to AuNCs. The LysNP-AuNC probe was implemented for FRET detection of cyanide with a linear range of 3-100 μM. Additionally, the selectivity of the LysNP-AuNC probe for cyanide toward other anions was remarkably high. The practicality of the proposed probe was evaluated by quantifying cyanide in tap water and soils and monitoring the liberation of hydrogen cyanide from cyanogenic glycoside-containing foods.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- College of Ecology and Resource Engineering, Wuyi University, China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, China.
| | - Jui-Yeh Rau
- College of Ecology and Resource Engineering, Wuyi University, China; Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, China
| | - Hung-Chi Chiou
- Department of Chemistry, National Sun Yat-sen University, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan.
| |
Collapse
|
4
|
Osak M, Buszewicz G, Baj J, Teresiński G. Determination of Cyanide in Blood for Forensic Toxicology Purposes-A Novel Nci Gc-Ms/Ms Technique. Molecules 2021; 26:5638. [PMID: 34577109 PMCID: PMC8469058 DOI: 10.3390/molecules26185638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
One of the recently evolving methods for cyanide determination in body fluids is GC-MS, following extractive alkylation with pentafluorobenzyl bromide or pentafluorobenzyl p-toluenesulfonate. The aim of this study was to improve previous GC methods by utilizing a triple quadrupole mass spectrometer, which could enhance selectivity and sensitivity allowing for the reliable confirmation of cyanide exposure in toxicological studies. Another purpose of this study was to facilitate a case investigation including a determination of cyanide in blood and to use the obtained data to confirm the ingestion of a substance, found together with a human corpse at the forensic scene. The blood samples were prepared following extractive alkylation with a phase transfer catalyst tetrabutylammonium sulfate and the PFB-Br derivatization agent. Optimal parameters for detection, including ionization type and multiple reaction monitoring (MRM) transitions had been investigated and then selected. The validation parameters for the above method were as follows-linear regression R2 = 0.9997 in the range of 0.1 µg/mL to 10 µg/mL; LOD = 24 ng/mL; LOQ = 80 ng/mL and an average recovery of extraction of 98%. Our study demonstrates the first attempt of cyanide determination in blood with gas chromatography-tandem mass spectrometry. The established method could be applied in forensic studies due to MS/MS confirmation of organic cyanide derivative and low matrix interferences owning to utilizing negative chemical ionization.
Collapse
Affiliation(s)
- Marcin Osak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.O.); (G.B.); (G.T.)
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.O.); (G.B.); (G.T.)
| | - Jacek Baj
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.O.); (G.B.); (G.T.)
| |
Collapse
|
5
|
Goud DR, Sinha Roy K, Pardasani D, Purohit AK, Tak VK, Dubey DK. Gas chromatography-mass spectrometric identification of cyanide using a nucleophilic substitution based derivatization with S-phenyl benzenethiosulfonate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5839-5845. [PMID: 33227115 DOI: 10.1039/d0ay01643h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel, simple and efficient analytical method for GC-MS based identification of cyanide has been developed using a single step nucleophilic substitution based derivatization of cyanide in aqueous medium. The nucleophilic substitution reaction of cyanide with S-phenyl benzenethiosulfonate results in the formation of phenyl thiocyanate as a cyanide derivative and it was found that the relative response of the resultant cyanide derivative was much higher than that of the cyanide derivatives resulting from disulfide based derivatizing agents. The sample preparation protocol for the identification of cyanide in aqueous samples was also optimized with the new derivatizing agent. Derivatization followed by liquid-liquid extraction was employed for the preparation of aqueous samples containing cyanide salts. The resultant samples were subjected to GC-MS analysis for the identification of the cyanide derivative. Under optimized conditions, the detection and quantification limits for cyanide aqueous samples were found to be 0.075 μg mL-1 and 0.25 μg mL-1 respectively. The calibration curve had a linear relationship with y = 0.086x - 0.076 and r2 = 0.997 for the working range of 0.25 μg mL-1 to 50 μg mL-1. The intraday RSDs were between 2.24 and 8.17%, and the interday RSDs were between 2.22 and 12.85%. The method can also be successfully employed for the identification of hydrogen cyanide in aqueous medium. The applicability of the present method was demonstrated by analysing a real sample from apple seed extraction.
Collapse
|
6
|
Dong K, Xie F, Chang Y, Chen C, Wang W, Lu D, Gu X. A novel strategy for the efficient decomposition of toxic sodium cyanate by hematite. CHEMOSPHERE 2020; 256:127047. [PMID: 32446000 DOI: 10.1016/j.chemosphere.2020.127047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Toxic sodium cyanate is always present in cyanide-contaminated waste. A new technology for the efficient decomposition of toxic sodium cyanate by hematite was first proposed in this study. The decomposition of sodium cyanate under various atmospheres has been studied. Studies show that sodium cyanate decomposes above 782 °C in Ar and above 627 °C in air. Sodium cyanate does not decompose even roasted at 400 °C for 120 min in air. Hematite does not promote the decomposition of sodium cyanate in Ar. However, almost all sodium cyanate decomposes efficiently at 400 °C and the mass ration of hematite to sodium cyanate of 1:1 for 30 min in air or oxygen atmosphere. The increased mass ratio of hematite to sodium cyanate and roasting temperature can both favor the efficient decomposition of sodium cyanate. The efficient decomposition of sodium cyanate occurs within 30 min, and it is almost stagnant with the prolongation of roasting time. When roasted in air or oxygen in the presence of hematite, sodium cyanate decomposes to Na2CO3, CO2 and N2 and a small amount of NaNO3 and NOx. The optimal efficient decomposition of sodium cyanate is to roast above 400 °C for 30 min in air or O2 at a mass ration of hematite to sodium cyanate greater than 1:1.
Collapse
Affiliation(s)
- Kaiwei Dong
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Feng Xie
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Yongfeng Chang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Chunlin Chen
- CSIRO Minerals Resources, Clayton, Victoria, 3168, Australia
| | - Wei Wang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Diankun Lu
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Xiaowei Gu
- Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| |
Collapse
|
7
|
Kakehashi H, Shima N, Kamata H, Nishioka H, Ishikawa A, Asai R, Nitta A, Wada M, Nakano S, Matsuta S, Sasaki K, Kamata T, Miki A, Katagi M. Development of a new method for cyanide determination using dimethoxytriazinyl (DMT) derivatization. ACTA ACUST UNITED AC 2020. [DOI: 10.3408/jafst.774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Noriaki Shima
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Hiroe Kamata
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | | | - Akari Ishikawa
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Ryutaro Asai
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Atsushi Nitta
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Misato Wada
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Shihoko Nakano
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | | | - Keiko Sasaki
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Tooru Kamata
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | - Akihiro Miki
- Forensic Science Laboratory, Osaka Prefectural Police H. Q
| | | |
Collapse
|
8
|
Wei Y, Wang F, Liu X, Fu P, Yao R, Ren T, Shi D, Li Y. Thermal remediation of cyanide-contaminated soils:process optimization and mechanistic study. CHEMOSPHERE 2020; 239:124707. [PMID: 31479912 DOI: 10.1016/j.chemosphere.2019.124707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Site soils with persistent cyanide compounds (primarily iron-cyanide complex) pose potential hazards to the environment and require remediation before redevelopment. This study evaluated the possibility of thermal treatment on remediation of cyanide-contaminated soils via batch heating experiments spanning a wide temperature range (200-500 °C). The change with operation variables of total cyanide and some reaction intermediates (e.g. CN-) was analyzed in order to elucidate the optimal variables that guarantee cyanide removal while generating no hazardous byproducts. Temperature, heating time and cyanide species have been found to be important parameters influencing removal/destruction of cyanide in soils. For soils bearing K3[Fe(CN)6] and K4[Fe(CN)6], a removal efficiency of >99.9% can be obtained with temperatures over 350 °C at 1 h, while for samples bearing Fe4[Fe(CN)6]3, a higher temperature (>450 °C) is needed to obtain an equivalent efficiency. During heating, the iron-cyanide complexes decomposed, releasing highly toxic free cyanides, which will subsequently be oxidized. However, a small percentage of free cyanide can always be detected as a result of incomplete oxidation, thus caution should be taken to minimize the accumulation of free cyanide during thermal treatment.
Collapse
Affiliation(s)
- Yunmei Wei
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China.
| | - Fei Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| | - Xin Liu
- Xinqiao Hospital, Chongqing, 400045, PR China
| | - Pengrui Fu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| | - Ruixuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| | - Tingting Ren
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
9
|
Pavlov J, Attygalle AB. Gold Nanoparticles (AuNPs) as Reactive Matrix for Detection of Trace Levels of HCN in Air by Laser Desorption/Ionization Mass Spectrometry (LDI-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:806-813. [PMID: 30847834 DOI: 10.1007/s13361-018-02131-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Under direct laser desorption/ionization mass spectrometric conditions, the irradiation of target spots made of gold nanoparticle residues generates a series of peaks at m/z 197, 394, 591… representing Aun- ions (n = 1-3). In contrast, spectra recorded from gold nanoparticles directly mixed with an alkali cyanide exhibited an additional peak at m/z 249, indicating an abundant generation of gaseous [Au(CN)2]- ions upon irradiation. The relative intensity of the m/z 249 peak surged when the amount of cyanide in the mixture was increased. Most remarkably, a peak at m/z 249 was observed even from neat AuNPs upon irradiation, if a nearby spot, which was not irradiated, happened to bear a cyanide sample. We postulated that traces of HCN emanating from the headspace of aqueous cyanide solution during the sample-plate preparation is sufficient to convert gold to AuCN, which is subsequently detected as [Au(CN)2]-. Further experiments demonstrated that the relative intensity of the m/z 249 peak diminishes exponentially as the AuNP spot becomes more distant from the putative HCN source. Eventually, the method was developed as an efficient procedure to detect HCN or alkali cyanides. Using KCN, the detection limits were determined to be below 10 pg of CN- per spot. The method also demonstrated that, upon crushing, the seeds or roots of certain fruits and vegetables such as apple, peach, radish, and cassava, but not carrot, release HCN in amounts detectable by this method. Graphical Abstract.
Collapse
Affiliation(s)
- Julius Pavlov
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Athula B Attygalle
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
10
|
Pagliano E, Campanella B, D'Ulivo A, Mester Z. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography - A review. Anal Chim Acta 2018; 1025:12-40. [DOI: 10.1016/j.aca.2018.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
|