1
|
Cheng T, Xie Z, Wang T, Jiang Y, Guo X, Liu X, Wen Y, Yang H, Wu Y. Ultrasensitive SERS Detection of Five β-Blockers Achieved Using Chemometrics with a Two-Dimensional Substrate Formed by Large-Sized Ag@SiO 2 Nanoparticles. Anal Chem 2024; 96:16379-16386. [PMID: 39360675 DOI: 10.1021/acs.analchem.4c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We report on a surface-enhanced Raman scattering (SERS) platform for the detection of five beta-blockers (β-blockers): atenolol, esmolol, labetalol, sotalol, and propranolol. Key to this platform was a two-dimensional substrate formed by self-assembling large Ag@SiO2 nanoparticles (Ag@SiO2 NPs) on a silicon wafer. The close arrangement of these large nanoparticles on the surface generated a strong and uniform electromagnetic field, which enhanced SERS signal intensity for the detection of small amounts of the target molecules. The intensities of characteristic peaks of the five β-blocker drugs increased linearly with the increase of their concentrations in the range of 10-5 to 10-8 mol/L. The detection limits were 10-10 mol/L for propranolol, 10-9 mol/L for atenolol, labetalol, and sotalol, and 10-8 mol/L for esmolol. Determination of these five β-blocker drugs added to human urine samples, using a portable Raman spectroscopy instrument, showed quantitative recovery (93-101%). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of SERS spectral data improved the differentiation among these five β-blockers. This study highlights the potential of the developed SERS platform for rapid, on-site detection of illicit drugs and for antidoping screening.
Collapse
Affiliation(s)
- Tao Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ziyue Xie
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Tianrun Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Yu RB, Quirino JP. Pseudophase-aided in-line sample concentration for capillary electrophoresis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Yao Y, Wang S, Zhou R, Shang Y, Du K, He J, Li J, Ma L, Chang Y. A novel reverse migration micellar electrokinetic chromatography method for in‐capillary screening and quantifying of antioxidant components in Sanyetangzhiqing using 2,2′‐Azinobis‐(3‐ethylbenzthiazoline‐6‐sulphonate) as oxidation‐free radical. Electrophoresis 2022; 43:1148-1160. [DOI: 10.1002/elps.202100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yaqi Yao
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Shanshan Wang
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
| | - Rui Zhou
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
| | - Ye Shang
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
| | - Kunze Du
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
| | - Jun He
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
- Haihe Laboratory of Modern Chinese Medicine Tianjin 301617 P. R. China
| | - Jin Li
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Lin Ma
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yanxu Chang
- State Key Laboratory of Component‐Based Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis Tianjin university of traditional Chinese medicine Tianjin P. R. China
- Haihe Laboratory of Modern Chinese Medicine Tianjin 301617 P. R. China
| |
Collapse
|
4
|
Li W, Qian Z, Li C, Guo D, Wei J, Liu X. On-Line Electrokinetic Supercharging and Sweeping for the Preconcentration and Determination of Nucleosides and Related Compounds by Capillary Electrophoresis. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1725033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wenjia Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Company, Dongguan, Guangdong, China
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Company, Dongguan, Guangdong, China
| | - Chunhong Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Company, Dongguan, Guangdong, China
| | - Dean Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yıldırım S, Erkmen C, Uslu B. Novel Trends in Analytical Methods for β-Blockers: An Overview of Applications in the Last Decade. Crit Rev Anal Chem 2020; 52:131-169. [DOI: 10.1080/10408347.2020.1791043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sercan Yıldırım
- Faculty of Pharmacy, Department of Analytical Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Cem Erkmen
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Bengi Uslu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Demeiry ME, Ali A, Abouleila Y, Shimizu Y, Masujima T, Salam RA, Hadad G, Emara S. Quantification and targeted detection of ciprofloxacin in dosage form and human urine by direct injection nano-electrospray ionization multi-stage mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Graphene Oxide/Polyethylene Glycol-Stick for Thin Film Microextraction of β-Blockers from Human Oral Fluid by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2019; 24:molecules24203664. [PMID: 31614604 PMCID: PMC6832871 DOI: 10.3390/molecules24203664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
A wooden stick coated with a novel graphene-based nanocomposite (Graphene oxide/polyethylene glycol (GO/PEG)) is introduced and investigated for its efficacy in solid phase microextraction techniques. The GO/PEG-stick was prepared and subsequently applied for the extraction of β-blockers, acebutolol, and metoprolol in human oral fluid samples, which were subsequently detected by liquid chromatography tandem mass spectrometry (LC-MS/MS). Experimental parameters affecting the extraction protocol including sample pH, extraction time, desorption time, appropriate desorption solvent, and salt addition were optimized. Method validation for the detection from oral fluid samples was performed following FDA (Food and Drug Administration) guidelines on bioanalytical method validation. Calibration curves ranging from 5.0 to 2000 nmol L−1 for acebutolol and 25.0 to 2000 nmol L−1 for metoprolol were used. The values for the coefficient of determination (R2) were found to be 0.998 and 0.996 (n = 3) for acebutolol and metoprolol, respectively. The recovery of analytes during extraction was 80.0% for acebutolol and 62.0% for metoprolol, respectively. The limit of detections (LODs) were 1.25, 8.00 nmol L−1 for acebutolol and metoprolol and the lower limit of quantifications (LLOQ) were 5.00 nmol L−1 for acebutolol and 25.0 nmol L−1 for metoprolol. Validation experiments conducted with quality control (QC) samples demonstrated method accuracy between 80.0% to 97.0% for acebutolol and from 95.0% to 109.0% for metoprolol. The inter-day precision for QC samples ranged from 3.6% to 12.9% for acebutolol and 9.5% to 11.3% for metoprolol. Additionally, the GO/PEG-stick was demonstrated to be reusable, with the same stick observed to be viable for more than 10 extractions from oral fluid samples.
Collapse
|
8
|
Liu T, Wang S, Ma H, Jin H, Li J, Yang X, Gao X, Chang Y. Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine) 3] 2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae). Molecules 2019; 24:molecules24173052. [PMID: 31443451 PMCID: PMC6749251 DOI: 10.3390/molecules24173052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
An efficient microwave-assisted extraction (MAE) combined with in-capillary [Fe(ferrozine)3]2+-capillary electrophoresis-Diode Array Detector (in-capillary [Fe(ferrozine)3]2+-CE-DAD) was developed to screen active components with the ability to chelate ferrous ions and determine the total antioxidant activity. The MAE conditions, including methanol concentration, extraction power, extraction time, and the ratio of material to liquid, were optimized by an L9(34) orthogonal experiment. Background buffer, voltage, and cartridge temperature that affect the separation of six compounds were optimized. It was found that rutin and quercetin were the main components chelating ferrous ions in Flos Sophorae Immaturus (Flos Sophorae) by the in-capillary [Fe(ferrozine)3]2+-CE-DAD. The recoveries were ranged from 95.2% to 104%. It was concluded that the MAE combined with in-capillary [Fe(ferrozine)3]2+-CE-DAD method was a simple, reliable, and efficient tool for screening active components from the complex traditional Chinese medicine samples and evaluating their ability to chelate ferrous ions.
Collapse
Affiliation(s)
- Tao Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shanshan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hua Jin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xuejing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
9
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|