Photoactive Titanium Dioxide Films with Embedded Gold Nanoparticles for Quantitative Determination of Mercury Traces in Humic Matter-Containing Freshwaters.
NANOMATERIALS 2021;
11:nano11020512. [PMID:
33670486 PMCID:
PMC7921970 DOI:
10.3390/nano11020512]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
Mercury detection in humic matter-containing natural waters is often associated with environmental harmful substances for sample preparation. Herein we report an approach based on photoactive titanium dioxide films with embedded gold nanoparticles (AuNP@TiO2 dipstick) for chemical-free sample preparation and mercury preconcentration. For this purpose, AuNPs are immobilized onto a silicon wafer and further covered with a thin photoactive titanium dioxide layer. The AuNPs allow the preconcentration of Hg traces via amalgamation, while TiO2 acts as a protective layer and, at the same time, as a photocatalyst for UV-C radiation-based sample pretreatment. Humic matter, often present in natural waters, forms stabile complexes with Hg and so hinders its preconcentration prior to detection, causing a minor recovery. This problem is solved here by irradiation during Hg preconcentration onto the photoactive dipstick, resulting in a limit of detection as low as 0.137 ng L-1 using atomic fluorescence spectrometry (AFS). A 5 min preconcentration step is sufficient to obtain successful recovery of Hg traces from waters with up to 10 mg L-1 DOC. The feasibility of the approach was demonstrated by the determination of Hg traces in Danube river water. The results show no significant differences in comparison with standard cold vapor-atomic fluorescence spectrometry (CV-AFS) measurements of the same sample. Hence, this new AuNP@TiO2 dipstick provides a single-step sample preparation and preconcentration approach that combines sustainability with high analytical sensitivity and accuracy.
Collapse