1
|
Logerot E, Perrin C, Ladner Y, Aubriet F, Carré V, Enjalbal C. Quantitating α-amidated peptide degradation by separative technologies and ultra-high resolution mass spectrometry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Logerot E, Cazals G, Memboeuf A, Enjalbal C. Revealing C-terminal peptide amidation by the use of the survival yield technique. Anal Biochem 2022; 655:114823. [DOI: 10.1016/j.ab.2022.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
|
3
|
Meyer S, Clases D, Gonzalez de Vega R, Padula MP, Doble PA. Separation of intact proteins by capillary electrophoresis. Analyst 2022; 147:2988-2996. [PMID: 35673805 DOI: 10.1039/d2an00474g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work introduces novel and universal workflows for the analysis of intact proteins by capillary electrophoresis and presents guidelines for the targeted selection of appropriate background electrolytes (BGEs) by consideration of the target proteins' isoelectric point (pI). The suitability of neutral dimethyl polysiloxane (PDMS) capillaries with dynamic coatings of cationic cetyltrimethylammonium bromide (CTAB) or anionic sodium dodecyl sulfate (SDS), and bare fused silica (BFS) capillaries were systematically evaluated for the analysis of histidine and seven model proteins in six BGEs with pH values between 3.0 and 9.6. Multiple capillary and BGE combinations were suitable for the analysis of all proteins with molecular weights ranging from 13.7-150 kDa, and pIs between 4.7 and 9.6. The CTAB-PDMS capillary was best suited for low pH BGEs, while the SDS-PDMS and BFS capillary were superior for high pH BGEs. These combinations consistently resulted in sharp peak shapes and rapid migration times. pH values of BGEs closer to the proteins' pI produced poorer peak shapes and decreased effective mobilities due to suppressed ionisation. Plots of mobility vs. pH crossed at approximately the pI of the protein in most cases. The workflow was applied to the analysis of caseins and whey proteins in milk for the separation of the seven most abundant proteins, including the isoforms of A1 and A2 β-casein and β-lactoglobulin A and B.
Collapse
Affiliation(s)
- Sarah Meyer
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia.
| | - David Clases
- Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Matthew P Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Separation Abilities of Capillary Electrophoresis Coupled with Ion Mobility Mass Spectrometry for the Discrete Detection of Sequence Isomeric Peptides. SEPARATIONS 2022. [DOI: 10.3390/separations9050106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The separation and discrete detection of isomeric sequence peptides with similar properties are important tasks for analytical science. Three different peptide isomers of 12 amino-acid residues long, containing direct and reverse regions of the alanine-valine-proline-isoleucine (AVPI) motif, were partially separated and discretely detected from their mixture using two approaches. Capillary electrophoresis enabled the separation and optical detection of the peptide sequence isomers close to the baseline. The ability to separate these sequence isomers from the mixture and discretely identify them from mass spectra has also been demonstrated by ion-mobility tandem mass spectrometry. Moreover, for the first time, capillary electrophoresis and ion-mobility mass spectrometry connected online have shown their ability for a discrete detection of the multidirectional sequence isomers.
Collapse
|
5
|
Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte Multilayers in Capillary Electrophoresis. Chempluschem 2022; 87:e202200028. [PMID: 35388990 DOI: 10.1002/cplu.202200028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Indexed: 02/21/2024]
Abstract
Capillary electrophoresis (CE) has been proven to be a performant analytical method to analyze both small and macro molecules. Indeed, it is capable of separating compounds of the same nature according to differences in their charge to size ratios, particularly proteins, monoclonal antibodies and peptides. However, one of the major obstacles to reach high separation efficiency remains the adsorption of solutes on the capillary wall. Among the different coating approaches used to control and minimize solute adsorption, polyelectrolyte multilayers can be applied to CE as a versatile approach. These coatings are made up of alternating layers of polycations and polyanions, and may be used in acidic, neutral or basic conditions depending on the solutes to be analyzed. This Review provides an overview of Successive Multiple Ionic-polymer Layer (SMIL) coatings used in CE, looking at how different parameters induce variations on the electro-osmotic flow (EOF), separation efficiency and coating stability, as well as their promising applications in the biopharmaceutical field.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
6
|
Gstöttner C, Haselberg R, Wuhrer M, Somsen GW, Domínguez-Vega E. Assessment of Macro- and Microheterogeneity of Monoclonal Antibodies Using Capillary Zone Electrophoresis Hyphenated with Mass Spectrometry. Methods Mol Biol 2022; 2531:125-142. [PMID: 35941483 DOI: 10.1007/978-1-0716-2493-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter focuses on the application of capillary zone electrophoresis hyphenated with mass spectrometry (CZE-MS) for the characterization of monoclonal antibodies (mAbs). mAbs are complex molecules comprising different glycoforms and many other posttranslational modifications. In addition to this inherent microheterogeneity, misassembling of antibodies can take place during production contributing to their macroheterogeneity. CZE-MS is a versatile and powerful technique which has demonstrated high potential for the assessment of both micro- and macroheterogeneity of mAbs. In this chapter, technical and practical considerations for the characterization of mAbs by CZE-MS are described. CE-MS interfacing, capillary coatings for the prevention of mAb adsorption, and sample preparation considerations are covered in detail. The assessment of the macro- and microheterogeneity is discussed and exemplified through three different approaches involving analysis of intact, enzymatically digested, and reduced antibodies. The examples also illustrate the use of two commercially available interfacing techniques (i.e., sheath liquid and sheathless) as well as different types of capillary coatings (positively charged and neutral coatings).
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob Haselberg
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Kuzyk VO, Somsen GW, Haselberg R. CE-MS for Proteomics and Intact Protein Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:51-86. [PMID: 34628627 DOI: 10.1007/978-3-030-77252-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Collapse
Affiliation(s)
- Valeriia O Kuzyk
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS: Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021; 147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Marine peptides are one of the richest sources of structurally diverse bioactive compounds and a considerable attention has been drawn towards their production and bioactivity. However, there is a paucity in consolidation of emerging trends encompassing both production techniques and biological application. Herein, we intend to review the recent advancements on different production, purification and identification technologies used for marine peptides along with presenting their potential health benefits. Bibliometric analysis revealed a growing number of scientific publications on marine peptides (268 documents per year) with both Asia (37.2%) and Europe (33.1%) being the major contributors. Extraction and purification by ultrafiltration and enzymatic hydrolysis, followed by identification by chromatographic techniques coupled with an appropriate detector could yield a high content of peptides with improved bioactivity. Moreover, the multifunctional health benefits exerted by marine peptides including anti-microbial, antioxidant, anti-hypertension, anti-diabetes and anti-cancer along with their structure-activity relationship were presented. The future perspective on marine peptide research should focus on finding improved separation and purification technologies with enhanced selectivity and resolution for obtaining more novel peptides with high yield and low cost. In addition, by employing encapsulation strategies such as nanoemulsion and nanoliposome, oral bioavailability and bioactivity of peptides can be greatly enhanced. Also, the potential health benefits that are demonstrated by in vitro and in vivo models should be validated by conducting human clinical trials for a technology transfer from bench to bedside.
Collapse
|
9
|
Pont L, Kuzyk V, Benavente F, Sanz-Nebot V, Mayboroda OA, Wuhrer M, Lageveen-Kammeijer GSM. Site-Specific N-Linked Glycosylation Analysis of Human Carcinoembryonic Antigen by Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry. J Proteome Res 2021; 20:1666-1675. [PMID: 33560857 PMCID: PMC8023805 DOI: 10.1021/acs.jproteome.0c00875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
With 28 potential N-glycosylation sites, human
carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular
mass can be attributed to its carbohydrates. CEA is often overexpressed
and released by many solid tumors, including colorectal carcinomas.
CEA displays an impressive heterogeneity and variability in sugar
content; however, site-specific distribution of carbohydrate structures
has not been reported so far. The present study investigated CEA samples
purified from human colon carcinoma and human liver metastases and
enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage
was achieved by a multienzymatic digestion approach with specific
enzymes, such as trypsin, endoproteinase Glu-C, and the nonspecific enzyme, Pronase, followed by analysis using
sheathless CE-MS/MS. In total, 893 different N-glycopeptides
and 128 unique N-glycan compositions were identified.
Overall, a great heterogeneity was found both within (micro) and in
between (macro) individual N-glycosylation sites.
Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic
tumor in regard to branching, bisection, sialylation, and fucosylation.
Those features, if further investigated in a targeted manner, may
pave the way toward improved diagnostics and monitoring of colorectal
cancer progression and recurrence. Raw mass spectrometric data and
Skyline processed data files that support the findings of this study
are available in the MassIVE repository with the identifier MSV000086774
[DOI: 10.25345/C5Z50X].
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Valeriia Kuzyk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.,Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
10
|
Andrasi M, Pajaziti B, Sipos B, Nagy C, Hamidli N, Gaspar A. Determination of deamidated isoforms of human insulin using capillary electrophoresis. J Chromatogr A 2020; 1626:461344. [DOI: 10.1016/j.chroma.2020.461344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
|
11
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
12
|
Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A 2020; 1620:460954. [DOI: 10.1016/j.chroma.2020.460954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
13
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
14
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Nyssen L, Fillet M, Cavalier E, Servais A. Highly sensitive and selective separation of intact parathyroid hormone and variants by sheathless CE‐ESI‐MS/MS. Electrophoresis 2019; 40:1550-1557. [DOI: 10.1002/elps.201800507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Laurent Nyssen
- Department of Clinical ChemistryCenter for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Etienne Cavalier
- Department of Clinical ChemistryCenter for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| | - Anne‐Catherine Servais
- Laboratory for the Analysis of Medicines (LAM)Center for Interdisciplinary Research on Medicines (CIRM)University of Liège Liège Belgium
| |
Collapse
|
16
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
17
|
Faserl K, Sarg B, Gruber P, Lindner HH. Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 2018; 39:1208-1215. [PMID: 29389038 PMCID: PMC6001557 DOI: 10.1002/elps.201700437] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Capillary electrophoresis coupled to mass spectrometry is a very efficient analytical method for the analysis of post-translational modifications because of its high separation efficiency and high detection sensitivity. Here we applied CE-MS using three differently coated separation capillaries for in-depth analysis of a set of 70 synthetic post-translationally modified peptides (including phosphorylation, acetylation, methylation, and nitration). We evaluated the results in terms of peptide detection and separation characteristics and found that the use of a neutrally coated capillary resulted in highest overall signal intensity of singly modified peptides. In contrast, the use of a bare-fused silica capillary was superior in the identification of multi-phosphorylated peptides (12 out of 15 were identified). Fast separations of approximately 12 min could be achieved using a positively coated capillary, however, at the cost of separation efficiency. A comparison to nanoLC-MS revealed that multi-phosphorylated peptides interact with the RP material very poorly so that these peptides were either washed out or elute as very broad peaks from the nano column which results in a reduced peptide identification rate (7 out of 15). Moreover, the methods applied were found to be very well suited for the analysis of the acetylated, nitrated and methylated peptides. All 36 synthetic peptides, which exhibit one of those modifications, could be identified regardless of the method applied. As a final step in this study and as a proof of principle, the phosphoproteome enriched from PC-12 pheochromocytoma cells was analyzed by CE-MS resulting in 5686 identified and 4088 quantified phosphopeptides. We compared the characterized analytes to those identified by a nanoLC-MS proteomics study and found that less than one third of the phosphopeptides were identical, which demonstrates the benefit by combining different approaches quite impressively.
Collapse
Affiliation(s)
- Klaus Faserl
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Bettina Sarg
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Peter Gruber
- Division of Medical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| | - Herbert H. Lindner
- Division of Clinical BiochemistryBiocenterInnsbruck Medical UniversityInnsbruckTirolAustria
| |
Collapse
|