1
|
Hasegawa S, Sawada T, Serizawa T. Identification of Water-Soluble Polymers through Machine Learning of Fluorescence Signals from Multiple Peptide Sensors. ACS APPLIED BIO MATERIALS 2023; 6:4598-4602. [PMID: 37889623 PMCID: PMC10664068 DOI: 10.1021/acsabm.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Recently, there has been growing concern about the discharge of water-soluble polymers (especially synthetic polymers) into the environment. Therefore, the identification of water-soluble polymers in water samples is becoming increasingly crucial. In this study, a chemical tongue system to simply and precisely identify water-soluble polymers using multiple fluorescently responsive peptide sensors was demonstrated. Fluorescence spectra obtained from the mixture of each peptide sensor and water-soluble polymer were changed depending on the combination of the polymer species and peptide sensors. Water-soluble polymers were successfully identified through the supervised or unsupervised machine learning of multidimensional fluorescence signals from the peptide sensors.
Collapse
Affiliation(s)
- Shion Hasegawa
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and
Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Lv Y, Wang P, Li J, Li N, Xu D, Wu R, Shen H, Li LS. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection. Anal Chim Acta 2022; 1237:340534. [DOI: 10.1016/j.aca.2022.340534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/01/2022]
|
3
|
Carbon Quantum Dots Based Chemosensor Array for Monitoring Multiple Metal Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123843. [PMID: 35744965 PMCID: PMC9227453 DOI: 10.3390/molecules27123843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
The simultaneous identification of multiple metal ions in water has attracted enormous research interest in the past few decades. We herein describe a novel method for multiple metal ion detection using a carbon quantum dots (CQDs)-based chemosensor array and the CQDs are functionalized with different amino acids (glutamine, histidine, arginine, lysine and proline), which act as sensing elements in the sensor array. Eleven metal ions are successfully identified by the designed chemosensor array, with 100% classification accuracy. Importantly, the proposed method allowed the quantitative prediction of the concentration of individual metal ions in the mixture with the aid of a support vector machine (SVM). The sensor array also enables the qualitative detection of unknown metal ions under the interference of tap water and local river water. Thus, the strategy provides a novel high-throughput approach for the identification of various analytes in complex systems.
Collapse
|
4
|
He M, Li J, Zhao D, Ma Y, Zhang J, Qiao C, Li Z, Huo D, Hou C. One metal-ion-regulated AgTNPs etching sensor array for visual discrimination of multiple organic acids. APPLIED OPTICS 2022; 61:4843-4850. [PMID: 36255968 DOI: 10.1364/ao.456278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of organic acids (OAs) is of great importance in the early diagnosis of specific diseases. In this study, we established an effective visual sensor array for the identification of OA. This is the first time, to our best knowledge, that metal ions were used to regulate the etching of silver triangular nanoprisms (AgTNPs) in an OA discrimination sensor array. The sensor array was based on the oxidation etching of AgTNPs by three metal ions (Mn2+, Pb2+, and Cr3+) and accelerated etching of AgTNPs by OA. The introduction of metal ions alone led to a slight wavelength shift of the AgTNPs colloid solution, signifying the incomplete etching of the AgTNPs. Nevertheless, when metal ions and OA were introduced simultaneously to the solution, a significant blueshift of the localized surface plasmon resonance peak was detected, and a color change of the AgTNPs was observed, which were the consequences of morphological transitions of the AgTNPs. The addition of different OA accelerated AgTNPs etching in varying degrees, generating diverse colorimetric response patterns (i.e., RGB variations) as "fingerprints" associated with each specific organic acid. Pattern recognition algorithms and neural network simulation were employed to further data analysis, indicating the outstanding discrimination capability of the provided array for eight OA at the 33 µM level. Moreover, excellent results of selective experiments as well as real samples tests demonstrate that our proposed method possesses great potential for practical applications.
Collapse
|
5
|
Jiang M, Chattopadhyay AN, Rotello VM. Cell-Based Chemical Safety Assessment and Therapeutic Discovery Using Array-Based Sensors. Int J Mol Sci 2022; 23:3672. [PMID: 35409032 PMCID: PMC8998465 DOI: 10.3390/ijms23073672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic chemicals are widely used in food, agriculture, and medicine, making chemical safety assessments necessary for environmental exposure. In addition, the rapid determination of chemical drug efficacy and safety is a key step in therapeutic discoveries. Cell-based screening methods are non-invasive as compared with animal studies. Cellular phenotypic changes can also provide more sensitive indicators of chemical effects than conventional cell viability. Array-based cell sensors can be engineered to maximize sensitivity to changes in cell phenotypes, lowering the threshold for detecting cellular responses under external stimuli. Overall, array-based sensing can provide a robust strategy for both cell-based chemical risk assessments and therapeutics discovery.
Collapse
Affiliation(s)
| | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.J.); (A.N.C.)
| |
Collapse
|
6
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Castro RC, Saraiva MLM, Santos JL, Ribeiro DS. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Cao Z, Li W, Wan H, Zhou J, Jia X, Ding Y. Rotating the C-N Bond in a Coumarin-Pyridine-Based Sensor for Pattern Recognition of Versatile Metal Ions. Anal Chem 2021; 93:14256-14262. [PMID: 34651497 DOI: 10.1021/acs.analchem.1c03302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cross-reactive sensor array is powerful for high-throughput discrimination of various kinds of metal ions. However, the construction of a multicomponent sensor array is always time-consuming and cost-ineffective. Herein, a practical four-component X1-based sensor array (X1SA) was obtained by simply dissolving a single dye molecule X1 in respective solvents such as methanol, ethanol, dimethyl sulfoxide, and acetonitrile. In this design, X1 exhibits strong solvatochromic fluorescence properties via an excited-state intramolecular proton transfer and intramolecular charge transfer combined mechanism. Moreover, rotation of the C-N bond between the pyridine and coumarin units in X1 enabled it to coordinate with metal ions through different binding modes, which acted as an additional dimension of the sensor array. Inspired by this C-N bond rotation strategy, X1SA was determined to be powerful in discriminating 20 kinds of metal ions in both phosphate-buffered saline and 5% serum media in a range of 0.1-100 μM. In addition, the sensor array was also successfully applied in differentiating similar and mixed metal ions such as Fe3+/Fe2+, Cd2+/Hg2+, and Sn2+/Pb2+ in serum samples, which is meaningful for investigating the biological roles of iron and early diagnosis of related metal poisoning accidents.
Collapse
Affiliation(s)
- Zhiyuan Cao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weiyi Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Huali Wan
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jingyi Zhou
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xue Jia
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yubin Ding
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
9
|
Dai H, Jia J, Fan Y, Chen H, Wang S, Shen C, Li A, Lu L, Zhou C, Fu H, She Y. Four-channel fluorescent sensor array based on various functionalized CdTe quantum dots for the discrimination of Chinese baijiu. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119513. [PMID: 33571738 DOI: 10.1016/j.saa.2021.119513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
As a special carrier of traditional Chinese culture, baijiu is rich in terms of types and ingredients. Its quality analysis and control are always important and complex issues that urgently need reliable evaluation methods. In this study, four different modified CdTe quantum dots (QDs) were used to characterize their sensing performance to various baijiu. A sensor array was then constructed through the complementary properties of differential fluorescence signals. To achieve an accurate and rapid evaluation of different baijiu types, a linear discriminant analysis (LDA) was introduced to extract and process spectral information. And the array was able to distinguish commercial baijiu samples with different aroma-types, brands, qualities and storage years with a recognition rate of 100%. In addition, according to the heat map, the organic acids in baijiu were shown to be the main components causing the fluorescence change through electron transfer (hydrogen bond) and resonance energy transfer among QDs and acids. Furthermore, using the partial least squares regression (PLSR) model, five representative organic acids were accurately quantified with a quantitative range of 10 μmol/L-80 μmol/L with a high selectivity. This QDs fluorescence sensing strategy provides an accurate, simple, and fast baijiu sensing method, which provides a potential use for on-line baijiu monitoring.
Collapse
Affiliation(s)
- Hupiao Dai
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Junjie Jia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China
| | - Yao Fan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Co., Ltd., Luzhou 646000, PR China
| | - Ailan Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lingmin Lu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chunsong Zhou
- International Environmental Protection City Technology Limited Company (IEPCT), Yixing 214200, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
10
|
Qiao M, Fan J, Ding L, Fang Y. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating Pyrene-Derived Fluorophores for Differentiation Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18395-18412. [PMID: 33871966 DOI: 10.1021/acsami.1c03758] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactant assemblies have drawn great attention in fabricating fluorescent sensors as they can provide advantages such as easy preparation, low cost, aqueous detection, high fluorescence stability, high sensitivity to external stimuli, etc. We have devoted the past few years to fluorescent cross-reactive sensors and arrays that are advantageous in differentiating similar analytes and analyzing mixed samples. In this Spotlight on Applications, we introduce our recent advances in developing surfactant assembly-based fluorescent sensors and arrays for discrimination applications. Besides using surfactant assemblies encapsulating fluorophores to fabricate multiple-element-based sensor arrays, we particularly proposed to take advantage of modulation effect of dynamic surfactant assemblies on the photophysical properties of encapsulated fluorophores to construct single-system-based discriminative sensors, which have been successfully applied in differentiation of multiple metal ions and various proteins. The applications of surfactant assembly-based sensors for the detection and discrimination of thiols, amino acids, and explosives are also introduced. Finally, the prospects of further efforts for improving surfactant ensemble sensors and their challenges are discussed.
Collapse
Affiliation(s)
- Min Qiao
- Key Laboratory of Applied Surface and Colloids Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Junmei Fan
- Key Laboratory of Applied Surface and Colloids Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloids Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloids Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
11
|
Rasouli Z, Ghavami R. A 3×3 visible-light cross-reactive sensor array based on the nanoaggregation of curcumin in different pH and buffers for the multivariate identification and quantification of metal ions. Talanta 2021; 226:122131. [PMID: 33676685 DOI: 10.1016/j.talanta.2021.122131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
Here, a facilely constructed 3 × 3 visible-light cross reactive sensor array based on nanoaggregation of curcumin (Cur) is proposed for the identification and quantification of metal ions (MIs). Synthesis of nanocurcumin (NCur) was characterized by UV-Vis spectrophotometry, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The average particle size was estimated about 5.21 ± 1.13 nm) n = 50 (. Our sensor array consists of nine receptors with distinct but overlapping specificities for 11 MIs: Al3+, Cd2+, Co2+, Cu2+, Hg2+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, and Zn2+. The receptors include the nine solutions of NCur at three buffers of phosphate, ammonium, and tris each at three pH of 7, 8, and 9 (in total 9 receptors). On account of different pH and buffers, NCur-MI binding affinities can be distinguished by monitoring the UV-Vis absorbance changes. These changes are optical fingerprints that can be used to identify each MI. The absorption values in sixteen wavelengths (i.e. 332, 352, 372, 392, 412, 432, 452, 472, 492, 512, 532, 552, 572, 592, 612, and 632 nm) are considered as analytical signals to quantitatively evaluate of the absorbance responses of the sensor array. A color difference map is provided to qualitatively visualize of the colorimetric sensor array responses. Under optimal conditions, the MIs are successfully discriminated in the range of 4-48 μmol L-1. The limit of detections (LODs) values ranged from 0.47 (for Fe3+) to 1.40 μmol L-1 (for Pb2+). Furthermore, two different mixing sets of the MIs are prepared for multivariate multicomponent analysis. Finally, the suggested sensor array is employed to evaluate its practicability in the discrimination of MIs in samples of river water and serum. Moreover, it can identify the MIs in these samples. The sensor array presents a simple, save time, cost-effective, and environmentally friendly method for the identification and quantification of MIs.
Collapse
Affiliation(s)
- Zolaikha Rasouli
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, 66177-15175, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
12
|
Chen X, Liang Y. Visual detection of different metal ions based on the tug of war between triangular Au nanoparticles and metal ions against mercaptans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:227-231. [PMID: 33346752 DOI: 10.1039/d0ay01845g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a new colorimetric sensor array was developed for the first time, which can rapidly recognize 9 types of metal ions (e.g., Ni2+, Zn2+, Cd2+, Cu2+, Cr3+, Fe2+, Se2+, Mn2+, and Mg2+). The colorimetric characteristics of the sensor array were closely related to the oxidation etching of the triangular gold nanoplates (AuNPLs) by hydrogen peroxide (H2O2), catalyzed by horseradish peroxidase (HRP). In the design, two types of thiols (glutathione (GSH) and cysteine (Cys)) as recognition elements were employed to construct the sensor units (AuNPLs/GSH and AuNPLs/Cys) and adjust the etching degrees of AuNPLs in the presence of various metal ions. The differential binding affinities between metal ions and thiols will lead to different degrees of oxidation etching of AuNPLs with hydrogen peroxide, exhibiting characteristic colors, which can be visually distinguished by the naked eye. Thus, the colorimetric sensor array provides a new way for the discrimination of various metal ions, thereby simplifying the water quality analysis.
Collapse
Affiliation(s)
- Xianli Chen
- Medical College of Shaoguan University, No. 108, Xinhua South Road, Shaoguan, Guangdong Province 512026, China
| | - Yong Liang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
13
|
Li J, Tang J, Zou H, Mo K, Wen C, Liang F. Binuclear Ln (III) complexes: High‐efficiency sensing of acetonitrile/dichloromethane and magnetocaloric effect. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Ji‐Xia Tang
- School of Foreign Language and International Business Guilin University of Aerospace Technology Guilin China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Kai‐Qiang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Chang‐Chun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Fu‐Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
14
|
Ihde MH, Pridmore CF, Bonizzoni M. Pattern-Based Recognition Systems: Overcoming the Problem of Mixtures. Anal Chem 2020; 92:16213-16220. [PMID: 33259192 DOI: 10.1021/acs.analchem.0c04062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transformative potential of pattern-based sensing techniques is often hampered by their difficulty in dealing with mixtures of analytes, a drawback that severely limits the applications of this sensing approach (the "problem of mixtures"). We show here that this is not an intrinsic limitation of the pattern sensing method. Indeed, we developed general guidelines for the design of the sensing, signal detection, and data interpretation methods to avoid this constraint, which resulted in chemical fingerprinting systems capable of recognizing unknown mixtures of analytes in a single experiment, without separation or pre-treatment before data acquisition. In support of these design principles, we report their successful application to an important analytical problem, metal ion discrimination and quantitation, by constructing a sensor array that provided a linear colorimetric response over a wide range of analyte concentrations. The resulting data set was interpreted using common multivariate data processing algorithms to achieve quantitative identification and concentration determination for pure and mixture samples, with excellent predictive ability on unknowns. Separation and detection methods for analyte mixtures, normally envisioned as independent processes, were successfully integrated in a single system.
Collapse
Affiliation(s)
- Michael H Ihde
- Department of Chemistry and Biochemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Cara F Pridmore
- Department of Chemistry and Biochemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, United States
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, P.O. Box 870336, Tuscaloosa, Alabama 35487-0336, United States.,Alabama Water Institute, P.O. Box 870206, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
15
|
Cao N, Xu J, Zhou H, Zhao Y, Xu J, Li J, Zhang S. A fluorescent sensor array based on silver nanoclusters for identifying heavy metal ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Chen H, Hu O, Fu H, Fan Y, Xu L, Meng Q, Zhang L, Lan W, Wu C, Tang S, She Y. Paper-based sensor for visual detection of Ag+ based on a “turn-off-on” fluorescent design. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Patel J, Jain B, Singh AK, Susan MABH, Jean-Paul L. Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Yin H, Truskewycz A, Cole IS. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Mikrochim Acta 2020; 187:336. [PMID: 32430591 DOI: 10.1007/s00604-020-04297-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal contamination is a major global concern and additive toxicity resulting from the exposure to multiple heavy metal ions is more pronounced than that induced by a single metal species. Quantum dots (QDs) have demonstrated unique properties as sensing materials for heavy metal ions over the past two decades. With the rapid development and deep understanding on determination of single heavy metal ion using QD probes, this technology has been employed for sensing multiple metal ions. This review (with 97 refs.) summarizes the progress made in recent years in methods for multiplexed determination of heavy metal ions using QDs. Following an introduction into the importance of simultaneous quantitation of multiple heavy metal ions in environmentally relevant settings, the review discusses the applications of different types of QDs, i.e. chalcogenide, carbon, polymer and graphene in this field. Determination strategies based on fluorometric, colorimetric and electrochemical responses were reviewed including the testing mechanisms and differentiation between various metal ions. In addition, current state of the art sensor constructions, i.e. immobilization of QDs on solid substrate and sensor arrays have been highlighted. A concluding section describes the limitations, opportunities and future challenges of the QD probes. We also compiled a comprehensive table of currently available literature. The listed papers provided information in the following categories, i.e. type of QDs used, ligands or other components in the probe, metal ions tested, medium/substrate of the probe, transduction methods, discrimination mechanism, limit of detection (LOD) and concentration range. Graphic abstract.
Collapse
Affiliation(s)
- Hong Yin
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Adam Truskewycz
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ivan S Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
19
|
Chen ZH, Fan QX, Han XY, Shi G, Zhang M. Design of smart chemical ‘tongue’ sensor arrays for pattern-recognition-based biochemical sensing applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Li J, Cheng Q, Huang H, Li M, Yan S, Li Y, Chang Z. Sensitive chemical sensor array based on nanozymes for discrimination of metal ions and teas. LUMINESCENCE 2019; 35:321-327. [DOI: 10.1002/bio.3730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jiao Li
- College of Food Science and EngineeringJilin University Changchun China
| | - Qi Cheng
- College of Food Science and EngineeringJilin University Changchun China
| | - Hui Huang
- College of Food Science and EngineeringJilin University Changchun China
| | - Meini Li
- College of Food Science and EngineeringJilin University Changchun China
| | - Shujun Yan
- College of Food Science and EngineeringJilin University Changchun China
| | - Yongxin Li
- College of New Energy and EnvironmentJilin University Changchun China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural EngineeringJilin University Changchun China
| |
Collapse
|
21
|
Colorimetric determination of nine metal ions based on the de-aggregation of papain-functionalized gold nanoparticles and using three chelating agents. Mikrochim Acta 2019; 186:854. [DOI: 10.1007/s00604-019-4028-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
|
22
|
|
23
|
Feng C, Zhao P, Wang L, Yang T, Wu Y, Ding Y, Hu A. Fluorescent electronic tongue based on soluble conjugated polymeric nanoparticles for the discrimination of heavy metal ions in aqueous solution. Polym Chem 2019. [DOI: 10.1039/c9py00033j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fluorescence sensing array (or fluorescent electronic tongue) based on six sorts of soluble conjugated polymeric nanoparticles (SCPNs) decorated with PEG chains is designed for the rapid identification of heavy metal ions in water.
Collapse
Affiliation(s)
- Chuying Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Peng Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Lili Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tao Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yusen Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
24
|
Jiao Z, Zhang P, Chen H, Li J, Zhong Z, Fan H, Cheng F. Halobenzoquinone-mediated assembly of amino acid modified Mn-doped ZnS quantum dots for halobenzoquinones detection in drinking water. Anal Chim Acta 2018; 1026:147-154. [DOI: 10.1016/j.aca.2018.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/01/2023]
|
25
|
Lvova L, Caroleo F, Garau A, Lippolis V, Giorgi L, Fusi V, Zaccheroni N, Lombardo M, Prodi L, Di Natale C, Paolesse R. A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Front Chem 2018; 6:258. [PMID: 30003078 PMCID: PMC6032370 DOI: 10.3389/fchem.2018.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
The development of a novel all-solid-state optical sensor array based on heteroatomic macrocyclic fluorophores (diaza-crown ether, metallocorrole and pyridinophans) for the photographic analysis of liquid media, is presented. The sensitivity of the new optical system toward a number of different species (cations: Li+, K+, Na+, NH4+, Mg2+, Ca2+, Co2+, Cu2+, Zn2+, Cd2+, Pb2+ and anions: NO2-, NO3-, Cl−, Br−, HCO3-) was evaluated both in single selective sensor mode and in multisensory arrangement. The satisfactory PLS1 regression models between sensor array optical response and analyte concentration were obtained for Cd2+, Cu2+, Zn2+, and NO2- ions in all the range of tested concentrations. Among these species the highest attention was focused onto detection of cadmium and nitrite ions, for which the detection limits, DL, estimated by 3σ method were found 0.0013 mg/L and 0.21 mg/L respectively, and these values are lower than the corresponding WHO guideline values of 0.003 mg/L (Cd2+) and 2 mg/L (NO2-). The suitability of the developed sensors implemented with familiar devices for signal acquisition (Light Emitting Diode, LED, as light source and a digital camera as a signal detector), and chemometric methods for data treatment to perform fast and low-cost monitoring of species under interest, in real samples of environmental importance, is demonstrated.
Collapse
Affiliation(s)
- Larisa Lvova
- Department of Chemical Science and Technologies, University "Tor Vergata", Rome, Italy
| | - Fabrizio Caroleo
- Department of Chemical Science and Technologies, University "Tor Vergata", Rome, Italy
| | - Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Monserrato, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Monserrato, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, Università degli Studi di Urbino, Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, Università degli Studi di Urbino, Urbino, Italy
| | - Nelsi Zaccheroni
- Dipartimento di Chimica "G. Ciamician" Università degli Studi di Bologna, Bologna, Italy
| | - Marco Lombardo
- Dipartimento di Chimica "G. Ciamician" Università degli Studi di Bologna, Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica "G. Ciamician" Università degli Studi di Bologna, Bologna, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University "Tor Vergata", Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University "Tor Vergata", Rome, Italy
| |
Collapse
|
26
|
Lu Z, Dai W, Liu B, Mo G, Zhang J, Ye J, Ye J. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications. J Colloid Interface Sci 2018; 525:86-96. [PMID: 29684734 DOI: 10.1016/j.jcis.2018.04.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb2+ and Cu2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb2+ and Cu2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications.
Collapse
Affiliation(s)
- Zhiwei Lu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Wanlin Dai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Baichen Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Guangquan Mo
- Department of Chemistry, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Junjun Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510641, PR China
| | - Jiaping Ye
- Guangzhou Ingsens Sensor Technology Co., Ltd, Kaiyuan Road 11, Guangzhou 510535, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
27
|
He W, Luo L, Liu Q, Chen Z. Colorimetric Sensor Array for Discrimination of Heavy Metal Ions in Aqueous Solution Based on Three Kinds of Thiols as Receptors. Anal Chem 2018. [PMID: 29519122 DOI: 10.1021/acs.analchem.8b00076] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present work, we report a novel colorimetric sensor array for rapid identification of heavy metal ions. The sensing mechanism is based on the competition between thiols and urease for binding with the metal ions. Due to the different metal ion-binding abilities between the thiols and urea, different percentages of urease are free of metal ions and become catalytically active in the presence of varied metal ions. The metal ion-free urease catalyzes the decomposition of urea releasing ammonia and changing the pH of the analyte solution. Bromothymol blue, the pH indicator, changes its color in response to the metal-caused pH change. Three different thiols (l-glutathione reduced, l-cysteine, and 2-mercaptoethanol) were used in our sensor array, leading to a unique colormetric repsonse pattern for each metal. Linear discriminant analysis (LDA) was employed to analyze the patterns and generate a clustering map for identifying 11 species of metal ions (Ni2+, Mn2+, Zn2+, Ag+, Cd2+, Fe3+, Hg2+, Cu2+, Sn4+, Co2+, and Pb2+) at 10 nM level in real samples. The method realizes the simple, fast (within 30 s), sensitive, and visual discrimination of metal ions, showing the potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Weiwei He
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| | - Long Luo
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - Qingyun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao , 266590 , China
| | - Zhengbo Chen
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| |
Collapse
|