1
|
Sun Y, Wang Y, Fang L, Xu T. Signal differentiation models for multiple microRNA detection: a critical review. Anal Bioanal Chem 2023. [PMID: 36864312 DOI: 10.1007/s00216-023-04626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs which have critical functions in various biological processes. Increasing evidence suggested that abnormal miRNA expression was closely related to many human diseases, and they are projected to be very promising biomarkers for non-invasive diagnosis. Multiplex detection of aberrant miRNAs has great advantages including improved detection efficiency and enhanced diagnostic precision. Traditional miRNA detection methods do not meet the requirements of high sensitivity or multiplexing. Some new techniques have opened novel paths to solve analytical challenges of multiple miRNA detection. Herein, we give a critical overview of the current multiplex strategies for the simultaneous detection of miRNAs from the perspective of two different signal differentiation models, including label differentiation and space differentiation. Meanwhile, recent advances of signal amplification strategies integrated into multiplex miRNA methods are also discussed. We hope this review provides the reader with future perspectives on multiplex miRNA strategies in biochemical research and clinical diagnostics.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yinan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
2
|
Dong H, Zheng M, Chen M, Song D, Huang R, Zhang A, Wen H, Jia L, Zhuang J. Exploiting the size exclusion effect of protein adsorption layers for electrochemical detection of microRNA: A new mechanism for design of E-DNA sensor. Biosens Bioelectron 2022; 220:114911. [DOI: 10.1016/j.bios.2022.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
|
3
|
Djebbi K, Xing J, Weng T, Bahri M, Elaguech MA, Du C, Shi B, Hu L, He S, Liao P, Tlili C, Wang D. Highly sensitive fluorescence multiplexed miRNAs biosensors for accurate clinically diagnosis lung cancer disease using LNA-modified DNA probe and DSN enzyme. Anal Chim Acta 2022; 1208:339778. [DOI: 10.1016/j.aca.2022.339778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/26/2022]
|
4
|
Song C, Chen W, Kuang J, Yao Y, Tang S, Zhao Z, Guo X, Shen W, Lee HK. Recent advances in the detection of multiple microRNAs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
6
|
Xu J, Guo J, Golob-Schwarzl N, Haybaeck J, Qiu X, Hildebrandt N. Single-Measurement Multiplexed Quantification of MicroRNAs from Human Tissue Using Catalytic Hairpin Assembly and Förster Resonance Energy Transfer. ACS Sens 2020; 5:1768-1776. [PMID: 32438801 DOI: 10.1021/acssensors.0c00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Absolute quantification of microRNAs (miRNAs) or other nucleic acid biomarkers is an important requirement for molecular and clinical biosensing. Emerging technologies with beneficial features concerning simplicity and multiplexing present an attractive route for advancing diagnostic tools toward rapid and low-cost bioanalysis. However, the actual translation into the clinic by miRNA quantification in human samples is often missing. Here, we show that implementing time-gated Förster resonance energy transfer (TG-FRET) into a catalytic hairpin assembly (CHA) can be used for the simultaneous quantification of two miRNAs with a single measurement from total RNA extracts of human tissues. A single terbium-dye FRET pair was conjugated at two specific distances within target-specific CHA hairpin probes, such that each miRNA resulted in distinct amplified photoluminescence (PL) decays that could be distinguished and quantified by TG PL intensity detection. Enzyme-free amplification in a separation-free assay format and the absence of autofluorescence background allowed for simple, specific, and sensitive detection of miR-21 and miR-20a with limits of detection down to 1.8 pM (250 amol). Reliable duplexed quantification of both miRNAs at low picomolar concentrations was confirmed by analyzing total RNA extracts from different colon and rectum tissues with single- and dual-target CHA-TG-FRET and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for comparison. These simple and multiplexed nucleic acid biomarker assays present a capable method for clinical diagnostics and biomolecular research.
Collapse
Affiliation(s)
- Jingyue Xu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- nanofret.com, Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Jiajia Guo
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Nicole Golob-Schwarzl
- Department of Dermatology and Venerology, Medical University of Graz, A-8010 Graz, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Xue Qiu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao Shandong, China
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- nanofret.com, Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
7
|
Target-fueled catalytic hairpin assembly for sensitive and multiplex microRNA detection. Anal Bioanal Chem 2020; 412:3019-3027. [PMID: 32232523 DOI: 10.1007/s00216-020-02531-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
As a typical strand displacement-based DNA circuit, the catalytic hairpin assembly (CHA) has the potential to transduce and amplify signals for analytical applications, but little practice has been fulfilled in Luminex-based multiple microRNAs (miRNAs) detection. Here, we proposed a target-fueled CHA-based platform for sensitive and multiple miRNAs detection, by virtue of the multiplex characteristic of the Luminex xMAP platform. The cyclic use of target miRNA, which forms a substantial amount of H1-H2 duplexes, has amplified the fluorescent response to achieve sensitive sensing. Key experimental conditions including hairpin probe concentrations, reaction temperature, and concentration of SA-PE were optimized. Liver tumor-related miRNA-21, miRNA-122, and miRNA-222 could be simultaneously detected with LOD of 2 pM. Overall, the proposed method first combined CHA with the Luminex xMAP system to construct a sensitive sensing platform suitable for multiple miRNAs detection in real sample analysis, which could potentially be applied in biomedical research and clinical diagnosis. Graphical abstract.
Collapse
|
8
|
A carbon nanoparticle and DNase I-Assisted amplified fluorescent biosensor for miRNA analysis. Talanta 2020; 213:120816. [PMID: 32200921 DOI: 10.1016/j.talanta.2020.120816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/24/2022]
Abstract
Nucleic acid-based biosensors have become powerful tools in biomedical applications. But the stability issue seriously limits their wide applications. Fortunately, the emergence of carbon nanoparticles (CNPs), which can effectively protect DNA probes from enzymatic digestion and unspecific protein binding, provides a good solution. In this work, a DNase I-aided cyclic enzymatic amplification method (CEAM) for microRNA analysis has been developed based on the coupling use of nucleic acid probes with specific molecular recognition ability as well as CNPs with excellent biostability. The method is simple and sensitive, with a detection limit down to 3.2 pM. Furthermore, satisfactory results are achieved for miRNA analysis in breast cancer cell lysate, demonstrating the applicability in disease diagnosis. The ingenious combination of CNPs and nucleic acid probes can open a new chapter in the development of versatile analytical strategies that holds great potentials for clinical diagnosis, food safety, and environmental monitoring.
Collapse
|
9
|
Xu W, Zhao A, Zuo F, Hussain HMJ. A graphene oxide-based hairpin probe coupling duplex-specific nuclease signal amplification for detection and imaging of mRNA in living cells. Talanta 2019; 195:732-738. [PMID: 30625609 DOI: 10.1016/j.talanta.2018.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022]
Abstract
In situ imaging of mRNA in living cells can help to monitor the real time mRNA expression and also useful for diagnosis and prognosis of the diseases. In this study, a new strategy was designed for simple, sensitive, and selective platform to detect the mRNA levels by combining a hairpin probe-graphene oxide (HP1/GO) and duplex-specific nuclease signal amplification (DSNSA). Initially, the DNA probe was adsorbed on the surface of GO to protect it from enzymatic digestion. Then, the target mRNA (T1) was hybridized with a partial hairpin probe which formed a duplex. Finally, under the action of DSN nuclease, the ssDNA in the DNA/RNA hybrid was selectively cleaved and produced small fragments. Then, T1 triggered the next reaction cycle, constituting a new circular exponential amplification. Here, we conclude that this assay is highly sensitive for the detection of target mRNA with the lower detection limit of 1 fM under optimal conditions. Furthermore, this strategy was successfully used for imaging of mRNA in living cells.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Aiwu Zhao
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Fangtao Zuo
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230027, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei 230031, PR China
| | | |
Collapse
|
10
|
Nguyen VT, Le BH, Seo YJ. T7 exo-mediated FRET-breaking combined with DSN–RNAse–TdT for the detection of microRNA with ultrahigh signal-amplification. Analyst 2019; 144:3216-3220. [DOI: 10.1039/c9an00303g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DSN–RNAse–TdT–T7 exo probing system allows the detection of miRNA 21 with very high sensitivity (LOD = 2.57 fM) and selectivity—the result of (i) avoiding the false-positive signal from miRNA reacting with TdT polymerase and (ii) signal amplification occurring through a FRET-breaking mechanism involving T7 exo.
Collapse
Affiliation(s)
- Van Thang Nguyen
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Binh Huy Le
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences
- Chonbuk National University
- South Korea
- Department of Chemistry
- Chonbuk National University
| |
Collapse
|
11
|
Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 2018; 190:248-254. [DOI: 10.1016/j.talanta.2018.07.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
|
12
|
Zhang J, Sun Y, Lu J. A novel bioluminescent detection of exonuclease I activity based on terminal deoxynucleotidyl transferase-mediated pyrophosphate release. LUMINESCENCE 2018; 33:1157-1163. [PMID: 30047621 DOI: 10.1002/bio.3530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 01/13/2023]
Abstract
Here we report a novel bioluminescence (BL) method for exonuclease I (Exo I) detection based on terminal deoxynucleotidyl transferase (TdT)-mediated pyrophosphate release. An inert hairpin probe with a blocked protruding 3'-terminal biotinylated nucleotide was designed, and a blocked 3'-terminal nucleotide of the probe would be removed only in the presence of Exo I, thus rendering the probe with a free 3'-hydroxyl group. Subsequently, with nucleotide incorporation by TdT, huge amounts of pyrophosphates were generated. After the conversion of pyrophosphate to adenosine triphosphate (ATP) through ATP sulfurylase, BL was emitted by the reaction of d-luciferin and ATP with firefly luciferase. Therefore, Exo I activity was indirectly quantified in the range 1-500 mU with a detection limit of 0.05 mU/μl. Moreover, the developed approach was successfully applied to investigate the inhibitory effect of streptavidin on cleavage of Exo I and also determine Exo I activity in spiked serum samples. Overall, the proposed method has high sensitivity and selectivity, and can be universally extended to the detection of other nucleases using terminal extension as a signal amplification method and BL as a detection signal, having potential application in the diagnosis of nuclease-related diseases or evaluation of nuclease functions in biological systems.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Yue Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| |
Collapse
|