1
|
Zhang X, He Z, Wang S, Zhang S, Song D. A pure near-infrared platform with dual-readout capability employing upconversion fluorescence and colorimetry for biosensing of uric acid. Talanta 2025; 291:127900. [PMID: 40056650 DOI: 10.1016/j.talanta.2025.127900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Exploring an accurate uric acid (UA) detection method is of paramount importance for early disease diagnosis. In this study, we have developed a novel near-infrared (NIR) probe that integrates upconversion nanoparticles (UCNPs) with polymetallic oxomolybdate (POM) clusters to achieve precise UA quantification. The strong absorption of POM peaking at 825 nm effectively quenched the fluorescence emission of UCNPs at 806 nm under 980 nm laser excitation through the resonance energy transfer effect. Upon introducing UA along with uricase, hydrogen peroxide generated from the catalytic reaction significantly diminished POM absorption, thereby restoring UCNP fluorescence by up to 19.5-fold. By leveraging the distinctive features of NIR dual-readout and NIR excitation, the interference from biological samples can be significantly mitigated. Consequently, the probe demonstrated excellent selectivity and sensitivity towards UA. For the colorimetric assay, the linear range for UA detection was 5-100 μM with a low detection limit of 0.283 μM, while the fluorescence method demonstrated a linear range of 1-60 μM with a detection limit as low as 11.74 nM. We successfully and accurately quantified UA in human serum, highlighting its great potential for biochemical and clinical applications.
Collapse
Affiliation(s)
- Xinglong Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Zuming He
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuyan Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuai Zhang
- Xingyuan Hospital of Yulin, Yulin, 719000, PR China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China.
| |
Collapse
|
2
|
Kale R, Das MK, Gowda AD, Raut SA, Pannikkandathil J, Bodake S, Borkar RM, Pahal S, Kumar S. Direct Printing of an Electrochemical Device and Its Interface with Paper for Uric Acid Detection in Human Sweat. ACS APPLIED BIO MATERIALS 2025; 8:870-878. [PMID: 39783631 DOI: 10.1021/acsabm.4c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Using a laser-scribed (direct printing) technique, we have fabricated an enzymeless, mediatorless, and paper-interfaced electrochemical device (P-LSG) for uric acid detection on a flexible polyimide sheet. Various paper substrates were investigated, and it was found that Whatman filter paper-1 is promising to obtain the best electrochemical signals at the small volume of electrolyte, i.e., 20 μL. Furthermore, the Whatman filter paper-1 was modified with gold nanoparticles (AuNPs) to improve the electrocatalytic activity of the P-LSG device. The fabricated AuNP-modified P-LSG biosensor exhibited excellent electrocatalytic activity for the detection of uric acid over a wide range of 10 to 750 μM, with sensitivity of ∼0.214 μA μM-1 cm-2, and a limit of detection of ∼1.4 μM. The sensor was further validated by using the UHPLC-ESI-MS/MS technique, and the observed percentage recovery was less than 10%. This work opens the window to modified paper substrates with various nanomaterials to improve the sensing parameters. The electrolyte storage capacity and rich chemistry of paper additionally provide an efficient immobilization platform for biorecognition elements to diagnose other metabolites. Furthermore, it has the potential to analyze the volume of small samples (like sweat, tears, urine, etc.) using paper to develop noninvasive wearable biosensors.
Collapse
Affiliation(s)
- Rutuja Kale
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Mayur Krishna Das
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Arun Dodde Gowda
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Sagar A Raut
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Jasirali Pannikkandathil
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| | - Saurabh Bodake
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, Karnataka 560065, India
| | - Saurabh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
| |
Collapse
|
3
|
Dong J, Liu G, Petrov YV, Feng Y, Jia D, Baulin VE, Yu Tsivadze A, Zhou Y, Li B. Discovery of FeP/Carbon Dots Nanozymes for Enhanced Peroxidase-Like Catalytic and Antibacterial Activity. Adv Healthc Mater 2024; 13:e2402568. [PMID: 39126360 DOI: 10.1002/adhm.202402568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Iron phosphide/carbon (FeP/C) serving as electrocatalysts exhibit excellent activity in oxygen reduction reaction (ORR) process. H2O2 catalyzed by peroxidase (POD) is similar to the formation of new electron transfer channels and the optimization of adsorption of oxygen-containing intermediates or desorption of products in ORR process. However, it is still a challenge to discover FeP/C with enhanced POD-like catalytic activity in the electrocatalytic database for biocatalysis. The discovery of FeP/carbon dots (FeP/CDs) nanozymes driven by electrocatalytic activity for enhanced POD-like ability is demonstrated. FeP/CDs derived from CDs-Fe3+ chelates show enhanced POD-like catalytic and antibacterial activity. FeP/CDs exhibit enhanced POD-like activities with a specific activity of 31.1 U mg-1 that is double higher than that of FeP. The antibacterial ability of FeP/CDs nanozymes with enhanced POD-like activity is 98.1%. The antibacterial rate of FeP/CDs nanozymes (250 µg mL-1) increased by 5%, 15%, and 36% compared with FeP, Fe2O3/CDs, and Cu3P/CDs nanozymes, respectively. FeP/CDs nanozymes will attract more efforts to discover or screen transition metal phosphide/C nanozymes with enhanced POD-like catalytic activity for biocatalysis in the electrocatalytic database.
Collapse
Affiliation(s)
- Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Vladimir E Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, 199034, Russia
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
4
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Wang MP, Li HH, Wu T, Xiao SJ, Liu GZ, Zhang L. Photosensitized covalent organic framework as a light-induced oxidase mimic for colorimetric detection of uric acid. LUMINESCENCE 2024; 39:e4713. [PMID: 38515291 DOI: 10.1002/bio.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic H2O2 and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile-4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP-EDA COF]). DCTP-EDA COF has a strong ability to harvest visible light, and it could catalyze the oxidation of 1,4-dioxane, 3,3',5,5'-tetramethylbenzidine under visible light irradiation to produce obvious color changes. With the addition of uric acid, however, the significant inhibition of the oxidase-mimicking activity of DCTP-EDA COF remarkably faded the color, and thus uric acid could be colorimetrically detected in the range of 2.0-150 μM with a limit of detection of 0.62 μM (3σ/K). Moreover, the present colorimetric method exhibited high selectivity; uric acid level in serum samples was successfully determined, and the recoveries ranged from 96.5% to 105.64%, suggesting the high accuracy of the present colorimetric method, which demonstrates great promise in clinical analysis.
Collapse
Affiliation(s)
- Meng Ping Wang
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Hui Han Li
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Ting Wu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Sai Jin Xiao
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Guang Zhou Liu
- School of Chemistry and Material Science, East China University of Technology, Nanchang, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Zhou C, Huang W, Zheng Y, Li Y. Colorimetric and electrochemical dual-mode uric acid determination utilizing peroxidase-mimicking activity of CoCu bimetallic nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1102-1110. [PMID: 38289093 DOI: 10.1039/d3ay02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present the preparation of CoCu bimetallic nanoclusters (Co@Cu-BNCs) by a hydrothermal and one-step pyrolysis method to build a colorimetric and electrochemical dual-mode sensing platform for uric acid (UA) detection. In the presence of H2O2, Co@Cu-BNCs with peroxidase-mimicking activity may convert colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxidized TMB (oxTMB). However, due to the inhibitory effect of uric acid (UA) on the oxidation process of TMB, the characteristic absorption peak intensity of oxTMB decreased when UA was added into a mixed solution. In this approach, a colorimetric assay platform for the detection of UA was demonstrated, with a linear range of 0.1-195 μM and a low limit of detection of 0.06 μM (S/N ratio of 3). In addition, an even wider detection range is achieved in the electrochemical method, due to the pronounced electrocatalytic activity of Co@Cu-BNCs. The surface of the glassy carbon electrode was modified with Co@Cu-BNCs to build an electrochemical sensor for detecting UA. The sensor achieves a wider linear range from 2 to 1000 μM and a limit of detection of 0.61 μM (S/N ratio of 3). Moreover, the detection of UA in a human serum sample showed satisfactory results. The results proved that the colorimetric and electrochemical dual-mode detection platform was sensitive, convenient and accurate.
Collapse
Affiliation(s)
- Yaopeng Liu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yi Gao
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Tingting Chu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Chengyu Zhou
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wensheng Huang
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yin Zheng
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| |
Collapse
|
7
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
8
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
9
|
Hu P, Tang Y, Zhu H, Xia C, Liu J, Liu B, Niu X. Multifunctional light-controllable nanozyme enabled bimodal fluorometric/colorimetric sensing of mercury ions at ambient pH. Biosens Bioelectron 2023; 238:115602. [PMID: 37595475 DOI: 10.1016/j.bios.2023.115602] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn-CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn-CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn-CdTe through electrostatic interaction and Te-Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn-CdTe is dynamically quenched, and the masking of active sites in aggregated Mn-CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
Collapse
Affiliation(s)
- Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
10
|
Ma C, Jiang N, Sun X, Kong L, Liang T, Wei X, Wang P. Progress in optical sensors-based uric acid detection. Biosens Bioelectron 2023; 237:115495. [PMID: 37442030 DOI: 10.1016/j.bios.2023.115495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The escalating number of patients affected by various diseases, such as gout, attributed to abnormal uric acid (UA) concentrations in body fluids, has underscored the need for rapid, efficient, highly sensitive, and stable UA detection methods and sensors. Optical sensors have garnered significant attention due to their simplicity, cost-effectiveness, and resistance to electromagnetic interference. Notably, research efforts have been directed towards UA on-site detection, enabling daily monitoring at home and facilitating rapid disease screening in the community. This review aims to systematically categorize and provide detailed descriptions of the notable achievements and emerging technologies in UA optical sensors over the past five years. The review highlights the advantages of each sensor while also identifying their limitations in on-site applications. Furthermore, recent progress in instrumentation and the application of UA on-site detection in body fluids is discussed, along with the existing challenges and prospects for future development. The review serves as an informative resource, offering technical insights and promising directions for future research in the design and application of on-site optical sensors for UA detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Liang
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, 310000, China.
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Tan Y, Qi M, Jiang H, Wang B, Zhang X. Determination of uric acid in serum by SERS system based on V O-MnCo 2O 4/Ag nanozyme. Anal Chim Acta 2023; 1274:341584. [PMID: 37455071 DOI: 10.1016/j.aca.2023.341584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The level of uric acid is crucial to human health. Octahedral oxygen vacancy MnCo2O4/Ag (VO-MnCo2O4/Ag) nanozyme was successfully prepared by simple hydrothermal, calcination and self-reduction methods. VO-MnCo2O4/Ag nanozyme is rich in Mn2+/Mn3+ and CO2+/CO3+ redox electron pairs, large specific surface area and oxygen vacancies. VO-MnCo2O4/Ag nanozyme showed high uricase-like activity and peroxidase-like activity. At the same time, the SERS signal of the detected molecule could be significantly enhanced after the catalytic reaction of the VO-MnCo2O4/Ag nanozyme. The Km values of VO-MnCo2O4/Ag nanozyme for H2O2 and TMB were 0.04 mM and 0.027 mM respectively. Based on the uric acid oxidase-like and peroxidase-like activities of VO-MnCo2O4/Ag, we developed a label-free, sensitive, and reliable SERS uric acid detection system. The detection linear range of uric acid is 0.01 μM-1000 μM and the detection of limit is 7.8 × 10-9 M. The results show that the sensing system has good accuracy, sensitivity, selectivity, and stability. It can be applied to the determination of samples under different conditions. This study provides profound insights into the design of enzyme-like activity regulation and SERS properties regulation of nanozymes, provides guidance for the study of reaction kinetics and catalytic mechanism of nanozymes, and has broad application prospects in the field of nanozymes and SERS sensing analysis.
Collapse
Affiliation(s)
- Yaoyu Tan
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Mengyao Qi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huan Jiang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Baihui Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xia Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
12
|
Li L, Zhang L, Gou L, Wei S, Hou X, Wu L. Au Nanoparticles Decorated CoP Nanowire Array: A Highly Sensitive, Anticorrosive, and Recyclable Surface-Enhanced Raman Scattering Substrate. Anal Chem 2023. [PMID: 37450688 DOI: 10.1021/acs.analchem.3c01282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Metal-semiconductor composites are promising candidates for surface-enhanced Raman scattering (SERS) substrates, but their inert basal plane, poor active sites, and limited stability hamper their commercial prospects. Herein, we report a three-dimensional CoP nanowire array decorated with Au nanoparticles on carbon cloth (Au@CoP/CC) as a self-supporting flexible SERS substrate. The Au nanoparticles spontaneously grew on the surface of the CoP nanowire array to form efficient SERS hot spots by a redox reaction with HAuCl4 without any additional reducing agents. Such Au@CoP/CC substrate exhibited a limit of detection of 10-11 M using rhodamine 6G as a model dye with outstanding corrosion resistance ability even under extreme acid and alkali conditions, which is better than many recently reported Au-based SERS substrates. Finite-difference time-domain simulation results demonstrated that Au@CoP/CC can provide a high density of regions with intense local electric field enhancement. Moreover, Au@CoP/CC can degrade target organic dyes for the self-cleaning and reproduction of SERS-active substrates under visible light irradiation. This work provides a novel means of using the plasmonic metal-transition metal phosphide composites for high-performance SERS sensing and photodegradation.
Collapse
Affiliation(s)
- Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Longcheng Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- Key Lab of Green Chem and Tech of MOE at College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Kang Q, Xu Y, Chen X. Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Acid via Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. SENSORS (BASEL, SWITZERLAND) 2023; 23:3881. [PMID: 37112222 PMCID: PMC10141710 DOI: 10.3390/s23083881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Monitoring of uric acid (UA) levels in biological samples is of great significance for human health, while the development of a simple and effective method for the precise determination of UA content is still challenging. In the present study, a two-dimensional (2D) imine-linked crystalline pyridine-based covalent organic framework (TpBpy COF) was synthesized using 2,4,6-triformylphloroglucinol (Tp) and [2,2'-bipyridine]-5,5'-diamine (Bpy) as precursors via Schiff-base condensation reactions and was characterized with scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) assays. The as-synthesized TpBpy COF exhibited excellent visible light-induced oxidase-like activity, ascribed to the generation of superoxide radicals (O2•-) by photo-generated electron transfer. TpBpy COF could efficiently oxidase the colorless substrate 3,3',5,5'-tetramethylbenzydine (TMB) into blue oxidized TMB (oxTMB) under visible light irradiation. Based on the color fade of the TpBpy COF + TMB system by UA, a colorimetric procedure was developed for UA determination with a detection limit of 1.7 μmol L-1. Moreover, a smartphone-based sensing platform was also constructed for instrument-free and on-site detection of UA with a sensitive detection limit of 3.1 μmol L-1. The developed sensing system was adopted for UA determination in human urine and serum samples with satisfactory recoveries (96.6-107.8%), suggesting the potential practical application of the TpBpy COF-based sensor for UA detection in biological samples.
Collapse
Affiliation(s)
- Qi Kang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yulong Xu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuwei Chen
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
14
|
Cicero AFG, Fogacci F, Di Micoli V, Angeloni C, Giovannini M, Borghi C. Purine Metabolism Dysfunctions: Experimental Methods of Detection and Diagnostic Potential. Int J Mol Sci 2023; 24:ijms24087027. [PMID: 37108190 PMCID: PMC10138451 DOI: 10.3390/ijms24087027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Purines, such as adenine and guanine, perform several important functions in the cell. They are found in nucleic acids; are structural components of some coenzymes, including NADH and coenzyme A; and have a crucial role in the modulation of energy metabolism and signal transduction. Moreover, purines have been shown to play an important role in the physiology of platelets, muscles, and neurotransmission. All cells require a balanced number of purines for growth, proliferation, and survival. Under physiological conditions, enzymes involved in purines metabolism maintain a balanced ratio between their synthesis and degradation in the cell. In humans, the final product of purine catabolism is uric acid, while most other mammals possess the enzyme uricase that converts uric acid to allantoin, which can be easily eliminated with urine. During the last decades, hyperuricemia has been associated with a number of human extra-articular diseases (in particular, the cardiovascular ones) and their clinical severity. In this review, we go through the methods of investigation of purine metabolism dysfunctions, looking at the functionality of xanthine oxidoreductase and the formation of catabolites in urine and saliva. Finally, we discuss how these molecules can be used as markers of oxidative stress.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Cardiovascular Internal Medicine Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Valentina Di Micoli
- Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum University of Bologna, 47921 Rimini, Italy
| | - Marina Giovannini
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | - Claudio Borghi
- Cardiovascular Internal Medicine Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
15
|
Ma C, Kong L, Sun X, Zhang Y, Wang X, Wei X, Wan H, Wang P. Enzyme-free and wide-range portable colorimetric sensing system for uric acid and hydrogen peroxide based on copper nanoparticles. Talanta 2023; 255:124196. [PMID: 36565527 DOI: 10.1016/j.talanta.2022.124196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Uric acid (UA) is the final product of purine metabolism. A high concentration of UA in body fluid may lead to kidney stones, gout, and some cardiovascular diseases. Therefore, the non-invasive daily monitoring of UA is of great significance for both hyperuricemia patients and fit people. However, most of the current detection methods for UA are enzyme-dependent which limits the application scenarios and lacks portable instruments for on-site detection, including optics and electrochemistry. In this work, an enzyme-free and wide-range colorimetric sensor for UA and H2O2 detection was developed based on a mercaptosuccinic acid (MSA)-modified Cu nanoparticles (CuNPs). Under the action of UA or H2O2, with the cleavage of MSAs on the CuNPs surface, small Cu particles are further aggregated into larger particles with a lightning violet color. With the employment of the multi-channel handheld automatic photometer (MHAP), the concentration of UA and H2O2 can be determined on-site according to the absorbance measurement by the photodiodes. The linear range of UA was 5 μM-4.5 mM with the limit of detection (LOD) of 3.7 μM, while the linear range of H2O2 was 5 mM-500 mM and 5 μM-5 mM with the LOD of 4.3 μM. This approach has been applied to the detection of UA in human urine, providing more possibilities for non-invasive home health monitoring, community medical diagnosis, and broader prospects of on-site disease detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
16
|
Krishna H, Krishnegowda A, Anantharaman S, Ashwinee KS, Vijayalakshmi AE. A simple uric acid assay by using 3‐hydroxytyramine as a chromogenic colorimetric sensor in human serum samples: Density functional theory supported mechanistic approach. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Honnur Krishna
- Department of Chemistry S. D. V. S. Sangh's S. S. Arts College and T. P. Science Institute Belagavi India
| | | | | | | | - A Edalli Vijayalakshmi
- Department of Chemistry S. D. V. S. Sangh's S. S. Arts College and T. P. Science Institute Belagavi India
| |
Collapse
|
17
|
Liu Y, Liu J. Salt-Toggled Capture Selection of Uric Acid Binding Aptamers. Chembiochem 2023; 24:e202200564. [PMID: 36394510 DOI: 10.1002/cbic.202200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Uric acid is the end-product of purine metabolism in humans and an important biomarker for many diseases. To achieve the detection of uric acid without using enzymes, we previously selected a DNA aptamer for uric acid with a Kd of 1 μM but the aptamer required multiple Na+ ions for binding. Saturated binding was achieved with around 700 mM Na+ and the binding at the physiological condition was much weaker. In this work, a new selection was performed by alternating Mg2+ -containing buffers with Na+ and Li+ . After 13 rounds of selection, a new aptamer sequence named UA-Mg-1 was obtained. Isothermal titration calorimetry confirmed aptamer binding in both selection buffers, and the Kd was around 8 μM. The binding of UA-Mg-1 to UA required only Mg2+ . This is an indicator of successful switching of metal dependency via the salt-toggled selection method. The UA-Mg-1 aptamer was engineered into a fluorescent biosensor based on the strand-displacement assay with a limit of detection of 0.5 μM uric acid in the selection buffer. Finally, comparison with the previously reported Na+ -dependent aptamer and a xanthine/uric acid riboswitch was also made.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, N2L3G1, Waterloo, ON, Canada.,Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
18
|
Mayurkumar Revabhai P, Jung Park T, Kumar Kailasa S. One-step hydrothermal approach for synthesis of hydroxy functionalized boron nitride nanosheets for fluorescence detection of uric acid in biological samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Li J, Cui X, Yang X, Qiu Y, Li Y, Cao H, Wang D, He W, Feng Y, Yang Z. Quantification of uric acid concentration in tears by using PDMS inverse opal structure surface-enhanced Raman scattering substrates: Application in hyperuricemia. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121326. [PMID: 35561446 DOI: 10.1016/j.saa.2022.121326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Hyperuricemia is closely related to a variety of diseases and has been listed as one of the twenty most persistent diseases in the 21st century by the United Nations. Therefore, strengthening the diagnosis of hyperuricemia has become imperative. Here, ordered inverse opal array structures (PAANs) composed of PDMS and gold nanoparticles (AuNPs) have been designed using a bottom-up self-assembly method. The structures exhibit a periodic distribution of hot spots, an enhancement factor (EF) of 4.22 × 104, and a relative standard deviation (RSD) of signal intensity of less than 5%, which can provide high reproducibility of SERS signals. The PAANs substrate is used to detect uric acid in the tears of patients with hyperuricemia, and the limit of detection is 6.03 μM. The significant linear relationship between blood uric acid and tear uric acid indicates that the developed method is a rapid, effective, and non-invasive technique for the determination of uric acid in tears.
Collapse
Affiliation(s)
- Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Cui
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Qiu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhan Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yun Feng
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Zhou Yang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
21
|
Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Yuan X, Zhao H, Yuan Y, Chen M, Zhao L, Xiong Z. CuCo 2S 4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid. Mikrochim Acta 2022; 189:283. [PMID: 35851827 DOI: 10.1007/s00604-022-05381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
An efficient analysis platform composed of nanozyme-based hydrogel kit and smartphone was constructed for on-site detection of uric acid (UA) in a rapid and realiable manner. CuCo2S4 nanoparticles (CuCo2S4 NPs) as a peroxidase mimic were successfully prepared and the peroxidase-like activity and catalytic mechanism were studied in detail. The hydrogen peroxide (H2O2) stimulus-responsive nanozyme-based hydrogel kit was manufactured by integrating agarose, CuCo2S4 NPs, and 3,3',5,5'-tetramethylbenzidine (TMB) into the cap of centrifuge tube. H2O2 generated via UA oxidation acts as stimulus signal, which triggers the oxidation of TMB to form blue product (oxTMB) under the catalysis of CuCo2S4 NPs, resulting in the color response of the constructed kit. The color image of the kit was captured by a smartphone built-in camera and converted into color intensity using ImageJ software, thus achieving the quantitative determination of UA. The portable kit possesses high selectivity and was used to monitor UA in human serum with satisfactory results (recovery was in the range 95.8-107.3% and RSD was not greater than 4.6%). The established sensing platform is convenient and reliable, which provides a new strategy for point-of-care testing of UA and has a broad prospect in the fields of chemical sensing and biomedical.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Hanqing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Mengying Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning Province, 110016, People's Republic of China.
| |
Collapse
|
24
|
Fabrication of a novel nano-biosensor for efficient colorimetric determination of uric acid. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Niu X, Liu B, Hu P, Zhu H, Wang M. Nanozymes with Multiple Activities: Prospects in Analytical Sensing. BIOSENSORS 2022; 12:bios12040251. [PMID: 35448311 PMCID: PMC9030423 DOI: 10.3390/bios12040251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/17/2023]
Abstract
Given the superiorities in catalytic stability, production cost and performance tunability over natural bio-enzymes, artificial nanomaterials featuring enzyme-like characteristics (nanozymes) have drawn extensive attention from the academic community in the past decade. With these merits, they are intensively tested for sensing, biomedicine and environmental engineering. Especially in the analytical sensing field, enzyme mimics have found wide use for biochemical detection, environmental monitoring and food analysis. More fascinatingly, rational design enables one fabrication of enzyme-like materials with versatile activities, which show great promise for further advancement of the nanozyme-involved biochemical sensing field. To understand the progress in such an exciting field, here we offer a review of nanozymes with multiple catalytic activities and their analytical application prospects. The main types of enzyme-mimetic activities are first introduced, followed by a summary of current strategies that can be employed to design multi-activity nanozymes. In particular, typical materials with at least two enzyme-like activities are reviewed. Finally, opportunities for multi-activity nanozymes applied in the sensing field are discussed, and potential challenges are also presented, to better guide the development of analytical methods and sensors using nanozymes with different catalytic features.
Collapse
Affiliation(s)
- Xiangheng Niu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| |
Collapse
|
26
|
Cheng S, Khan M, Yin F, Wu W, Sun T, Hu Q, Lin JM, Wang X. Liquid crystal-based sensitive and selective detection of uric acid and uricase in body fluids. Talanta 2022; 244:123455. [PMID: 35397324 DOI: 10.1016/j.talanta.2022.123455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The abnormal levels of uric acid (UA) in body fluids are associated with gout, type (II) diabetes, leukemia, Lesch-Nyhan syndrome, uremia, kidney damage, and cardiovascular diseases. Also, the presence of uricase (UOx) symbolizes genetic disorders and corresponding complications. Therefore, the detection of UA and UOx in the body fluids is significant for clinical diagnosis. 4-Cyano-4'-pentylbiphenyl (5CB, a nematic liquid crystal (LC)) was doped with octadecyl trimethylammonium bromide (OTAB, a cationic surfactant), which formed a self-assembled monolayer at the aqueous/5CB interface. The UOx-catalyzed oxidation of UA yielded H2O2, releasing the single-strand deoxyribonucleic acid (ssDNA) from the nanoceria/ssDNA complex. The interaction of the released ssDNA with OTAB disrupted the monolayer at the aqueous/5CB interface, which resulted in a dark to bright change when observed through a polarized optical microscope. The LC-based sensor allowed the detection of UA with a linear range of 0.01-10 μM and a limit of detection (LOD) of 0.001 μM. The UA detection was also performed in human urine samples and the results were comparable to that of a standard commercial colorimetric method. Similarly, the detection of UOx was performed, with a noted linear range of 20-140 μg/mL. The LOD was as low as 0.34 μg/mL. The detection of UOx was also demonstrated in human serum samples with excellent performance. This method provides a robust sensing platform for the detection of UA and UOx and has potential for applications in clinical analysis.
Collapse
Affiliation(s)
- Supan Cheng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Fangchao Yin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Wenli Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Tao Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
27
|
Li Y, Min Q, Wang Y, Zhuang X, Hao X, Tian C, Fu X, Luan F. A portable visual coffee ring based on carbon dot sensitized lanthanide complex coordination to detect bisphenol A in water. RSC Adv 2022; 12:7306-7312. [PMID: 35424689 PMCID: PMC8982287 DOI: 10.1039/d2ra00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a ratiometric fluorescence sensor along with a portable coffee ring visualized detection method for bisphenol A (BPA) was developed based on carbon dots. The probe was formed by the coordination polymerization of Eu3+ and 5'-adenosine monophosphate on the surface of carbon dots containing a large number of hydroxyl and carbonyl groups. The results showed that the fluorescence intensity ratio and the concentration of BPA had a good linear relationship in a wide range of 0.1-100 μM with a detection limit of 20 nM (S/N = 3). The recoveries of the added standard BPA in water samples ranged from 91.80 to 102.7% with relative standard deviation values no more than 1.84% (n = 3). In addition, the changes of the fluorescence color of the CDs@Eu-AMP suspension with different BPA concentrations can be easily visualized under a UV lamp by the naked eye, which highlights the great potential of the coffee ring detection method for the fast and convenient monitoring of BPA in real water samples.
Collapse
Affiliation(s)
- Yixiao Li
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Qi Min
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| |
Collapse
|
28
|
Ming J, Zhu T, Li J, Ye Z, Shi C, Guo Z, Wang J, Chen X, Zheng N. A Novel Cascade Nanoreactor Integrating Two-Dimensional Pd-Ru Nanozyme, Uricase and Red Blood Cell Membrane for Highly Efficient Hyperuricemia Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103645. [PMID: 34668309 DOI: 10.1002/smll.202103645] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Nanozyme-based cascade reaction has emerged as an effective strategy for disease treatment because of its high efficiency and low side effects. Herein, a new and highly active two-dimensional Pd-Ru nanozyme is prepared and then integrated with uricase and red blood cell (RBC) membrane to fabricate a tandem nanoreactor, Pd-Ru/Uricase@RBC, for hyperuricemia treatment. The designed Pd-Ru/Uricase@RBC nanoreactor displayed not only good stability against extreme pH, temperature and proteolytic degradation, but also long circulation half-life and excellent safety. The nanoreactor can effectively degrade UA by uricase to allantoin and H2 O2 and remove H2 O2 by using Pd-Ru nanosheets (NSs) with the catalase (CAT)-like activity. More importantly, the finally produced O2 from H2 O2 decomposition can in turn facilitate the catalytic oxidation of UA, as the degradation of UA is an O2 consumption process. By integrating the high-efficiency enzymatic activity, long circulation capability, and good biocompatibility, the designed Pd-Ru/Uricase@RBC can effectively and safely treat hyperuricemia without side effects. The study affords a new alternative for the exploration of clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianbao Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zichen Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Jingjuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
29
|
Saadati A, Farshchi F, Hasanzadeh M, Seidi F. A microfluidic paper-based colorimetric device for the visual detection of uric acid in human urine samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3909-3921. [PMID: 34387641 DOI: 10.1039/d1ay01192h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The monitoring of uric acid (UA) as a clinically relevant toxic biomolecule is of particular importance for the diagnosis of various syndromes and for the monitoring of patients undergoing chemotherapy or radiation therapy. Owing to its speed, low consumption of materials, high sensitivity, convenience, and the easy detection of color changes, colorimetric methods have attracted a lot of attention compared to other methods. The use of nanoparticles has been suggested for the non-enzymatic POC detection of biological molecules such as UA. Here, a sensitive, quantitative, and rapid diagnostic method for UA using silver nanoparticles (AgNPs) is reported. The main purpose of this work is to introduce a suitable tool for future studies based on various types of AgNPs for the on-site detection of clinical samples and biomarkers using portable devices. In the present study, a novel μPCD made to measure UA was used in human urine samples. AgNPs with their peroxidase-like activity led to the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and a bluish-green color upon the decomposition of hydrogen peroxide to ˙OH. UA also reduced the oxidized TMB. The proposed method showed linear responses from 500 to 10 000 μM (using silver citrate nanoparticles (Ag-Cit)), 50 to 10 000 μM (using Ag NPrs and Au@AgNPs), and 1 to 10 000 μM (using Ag NWs). The lower limits of quantification of the proposed method for the detection of UA using Ag-Cit, Ag nanoprisms, Au@Ag core-shell nanoparticles, and Ag nanowires were 500, 50, 50, and 1 μM, respectively. As a result, the proposed assay system could potentially be utilized to detect UA in human urine samples.
Collapse
Affiliation(s)
- Arezoo Saadati
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Farshchi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Li F, Rui J, Yan Z, Qiu P, Tang X. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples. Mikrochim Acta 2021; 188:311. [PMID: 34455515 PMCID: PMC8403067 DOI: 10.1007/s00604-021-04971-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
A simple dual-read assay for uric acid (UA) was developed based on a combined ratiometric fluorescent and colorimetric strategy using nitrogen-doped carbon dots (N-CDs). The biosensor relies on the oxidation of UA by uricase to produce H2O2, which was then converted to •OH radicals by I-, resulting in the oxidation of o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP). In the presence of UA, the colorless biosensor system changed to yellow. Furthermore, the presence of DAP quenched the fluorescence emission of the N-CDs at 427 nm based on the inner filter effect (IFE). With increasing UA concentrations, the fluorescence intensity of the biosensor at 427 nm decreased but increased at 580 nm, demonstrating the ratiometric response. A strong linearity was observed between the fluorescence intensity ratio of DAP to N-CDs (I580/I427) and the corresponding UA concentration over the range 0.5-150 μM, and a limit of detection (S/N ratio of 3) of 0.06 μM was calculated. The dual-read assay was successfully employed in the quantitation of UA in human serum and urine samples, revealing its potential for measuring UA in clinical samples.
Collapse
Affiliation(s)
- Fan Li
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Jiahan Rui
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ziyu Yan
- Department of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, 330031, China.
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Xiaomin Tang
- The Fourth Affiliated Hospital, Nanchang University, Nanchang, 330003, China
| |
Collapse
|
31
|
Farshchi F, Saadati A, Hasanzadeh M, Seidi F. Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules. RSC Adv 2021; 11:27298-27308. [PMID: 35480692 PMCID: PMC9037795 DOI: 10.1039/d1ra04764g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Uric acid (UA) is the end product of purine metabolism. Uric acid is usually excreted in the urine, but its abnormal increase and toxic amount can lead to diseases such as gout, hyperuricemia, Lesch-Nyhan syndrome, and cardiovascular disease. On the other hand, UA reduction can lead to neurodegenerative diseases such as sarcoma, glioblastoma, Hodgkin, and etc. Therefore, rapid identification of UA is of great importance. In this work, a simple, portable, inexpensive, and fast microfluidic paper-based colorimetric sensor based on the color change in the presence of UA by using AuNPs was developed. The results can be easily identified with naked eye and further confirmed by UV-vis spectrophotometry. In this method, iron pattern and fiberglass paper were used to construct diagnostic areas and hydrophilic microfluidic channels. We greatly reduced the preparation time of this pattern using a magnet (about three minutes). In this work, four types of nanoparticles with different lower limit of quantification (LLOQ) were used. Linear range of 10-6 to 10-3 M and LLOQ of 10-6 M were obtained for the determination of uric acid using AuNPs-CysA as optical probe. Also, by AuNPs as optical probe a linear range of 10-4 to 10-2 M and the obtained LLOQ was 10-4 M. Finally, by AuNFs as optical probe linear range from 10-6 to 10-2 M and 5 × 10-5 to 10-2 M along with LLOQ of 10-6 and 5 × 10-5 M, respectively. The designed system successfully studied in human urine samples.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Arezoo Saadati
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
32
|
Liu J, Cao Y, Zhu X, Zou L, Li G, Ye B. Enhanced oxidase-mimicking activity of Ce 4+ by complexing with nucleotides and its tunable activity for colorimetric detection of Fe 2. Chem Commun (Camb) 2021; 57:8340-8343. [PMID: 34328150 DOI: 10.1039/d1cc02675e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexing with adenosine-5'-monophosphate (AMP) was proven to be a facile way to enhance the oxidase-mimicking activity of Ce4+, and enabled nanoenzyme recovery and reuse. Additionally, the oxidase-mimicking activity of AMP-Ce4+ infinite coordination polymers (ICPs) could be specifically inhibited by Fe2+. Based on this finding, we developed a simple and highly selective colorimetric assay to detect Fe2+.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Yuan C, Qin X, Xu Y, Shi R, Cheng S, Wang Y. Dual-signal uric acid sensing based on carbon quantum dots and o-phenylenediamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119678. [PMID: 33743305 DOI: 10.1016/j.saa.2021.119678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 05/07/2023]
Abstract
Fluorescent carbon quantum dots (CQDs), which showed excitation-dependent emission characteristics, were prepared using a facile hydrothermal method. The structure and optical properties of CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. These CQDs also showed peroxidase-like activity and could catalyze the H2O2-mediated oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (DAP) with an absorption peak at 420 nm. DAP exhibited an obvious fluorescence emission at 550 nm under the excitation of 360 nm. On the other hand, it decreased the fluorescence of CQDs at 450 nm via inner filter effect. The experimental results indicated that the H2O2 concentration affected the color of DAP and the fluorescence intensity of CQDs and DAP. Thus, a colorimetric and ratiometric fluorescence dual-signal method was established for measuring the concentrations of H2O2 and uric acid (UA). The effects of pH, incubation temperature, incubation time, and OPD concentration on the response were investigated. Under the conditions of pH 7.5, temperature 50 °C, incubation time 30 min, and OPD 1.5 mM, the absorbance and fluorescence intensity ratio responses were linearly dependent on UA concentration ranging from 5.0 μM to 100 μM. The limits of detection were 0.7 and 0.5 μM with a colorimetric method and ratiometric fluorescence method, respectively. More importantly, this dual responsive method has been applied to the determination of UA in urine samples with satisfactory results.
Collapse
Affiliation(s)
- Chunling Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Rui Shi
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Shiqi Cheng
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China.
| |
Collapse
|
34
|
Visual and colorimetric detection of uric acid in human serum and urine using chitosan stabilized gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Ye K, Wang L, Song H, Li X, Niu X. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B 2020; 7:4794-4800. [PMID: 31389965 DOI: 10.1039/c9tb00951e] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkaline phosphatase (ALP) is extensively used as a clinical biomarker because of its close relevance with a variety of diseases. Thus, exploring reliable and practical methods for ALP analysis is of great significance. In the present work, we explored MIL-53(Fe) as a bifunctional platform with pyrophosphate (PPi)-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for ALP sensing. The proposed MIL-53(Fe) could exhibit favorable peroxidase-mimicking activity to catalytically decompose H2O2 to hydroxyl radicals, which had strong oxidizing ability to oxidize the terephthalic acid bridging ligand, resulting in the oxidation-stimulated turn-on fluorescence of MIL-53(Fe) itself. Due to the strong coordination interaction between PPi and Fe3+, the former with a relatively large molecular structure was able to inhibit the catalytic activity of MIL-53(Fe) via capping active Fe3+ sites, leading to the suppression of its self-fluorescence response. When ALP was present, it could hydrolyze the PPi inhibitor and restore the dual functions of MIL-53(Fe) to provide fluorescence again. With the above principle, highly sensitive and selective determination of ALP with a linear scope of 2-80 U L-1 and a detection limit down to 0.7 U L-1 was achieved. The MIL-53(Fe) was also demonstrated to be very reliable in measuring the target in human serum, indicating its great promise as an integrated tool for ALP detection in clinical practice.
Collapse
Affiliation(s)
- Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | |
Collapse
|
36
|
A novel alkaline phosphatase activity sensing strategy combining enhanced peroxidase-mimetic feature of sulfuration-engineered CoO x with electrostatic aggregation. Anal Bioanal Chem 2020; 412:5551-5561. [PMID: 32671451 DOI: 10.1007/s00216-020-02815-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023]
Abstract
Given alkaline phosphatase (ALP) takes part in the phosphorylation/dephosphorylation processes in the body, its activity is universally taken as an important indicator of many diseases, and thus developing reliable and efficient methods for ALP activity determination becomes quite important. Here, we propose a new sensing strategy for ALP activity by integrating the improved peroxidase-mimicking catalysis of sulfuration-engineered CoOx with the hexametaphosphate ion (HMPi)-mediated electrostatic aggregation. After sulfuration engineering, the CoOx composite coming from the pyrolysis of ZIF-67 exhibits enhanced peroxidase-mimetic catalytic ability to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to its oxide TMBox, offering a remarkable color change from colorless to mazarine; with the presence of HMPi, the rapid electrostatic assembly of negatively charged HMPi and positively charged TMBox leads to the aggregation of the latter, resulting in a color fading phenomenon; when ALP is added in advance to hydrolyze the HMPi mediator, the aggregation procedure is significantly suppressed, and such that the solution color can be recovered. Based on this principle, efficient determination of ALP activity was gained, giving a wide detection scope from 0.8 to 320 U/L and a detection limit as low as 0.38 U/L. Reliable analysis of the target in serum samples was also achieved, verifying the feasibility and practicability of our strategy in measuring ALP activity for clinical applications. Graphical abstract.
Collapse
|
37
|
Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X. A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal Chim Acta 2020; 1121:26-34. [DOI: 10.1016/j.aca.2020.04.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
|
38
|
Ammonium Nitrate‐Assisted Low‐Temperature Synthesis of Co, Co
2
P@CoP Embedded in Biomass‐Derived Carbons as Efficient Electrocatalysts for Hydrogen and Oxygen Evolution Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202001810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Amjadi M, Hallaj T, Nasirloo E. In situ formation of Ag/Au nanorods as a platform to design a non-aggregation colorimetric assay for uric acid detection in biological fluids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Tripathi A, Harris KD, Elias AL. Peroxidase-Like Behavior of Ni Thin Films Deposited by Glancing Angle Deposition for Enzyme-Free Uric Acid Sensing. ACS OMEGA 2020; 5:9123-9130. [PMID: 32363264 PMCID: PMC7191584 DOI: 10.1021/acsomega.9b04071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/09/2020] [Indexed: 05/28/2023]
Abstract
We present a nanozyme-based biosensor fabricated from nanostructured Ni films deposited onto a silicon wafer by glancing angle deposition (GLAD) for enzyme-free colorimetric monitoring of uric acid (UA), a biomarker for gout, high blood pressure, heart disease, and kidney disease. The helically structured Ni GLAD nanozymes exhibit excellent peroxidase-like activity to accelerate the oxidation reaction of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product, oxidized TMB (oxTMB), mediated by H2O2. In the presence of UA, oxTMB is reduced, decreasing the optical absorbance by an amount determined by the concentration of UA in the solution. The nanozyme not only mimics peroxidase but also possesses the notable qualities of reusability, simple operation, and reliability, making it environment-friendly and suitable for on-demand analysis. We optimized essential working parameters (pH, TMB concentration, and H2O2 concentration) to maximize the initial color change of the TMB solution. The catalytic activity of this nanozyme was compared with conventional nanofilms using the Michaelis-Menten theory. Based on this, enzyme-free biosensors were developed for colorimetric detection of UA, providing a wide detection range and a limit of detection (3.3 μM) suitable for measurements of UA concentration in sweat. Furthermore, interference from glucose and urea was studied so as to explore the potential of the biosensor for use in the clinical diagnosis of UA biomarkers.
Collapse
Affiliation(s)
- Anuja Tripathi
- Department
of Chemical and Materials Engineering, Donadeo Innovation Centre for
Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kenneth D. Harris
- National
Research Council Canada, Nanotechnology
Research Centre, Edmonton, Alberta T6G 2M9, Canada
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Anastasia L. Elias
- Department
of Chemical and Materials Engineering, Donadeo Innovation Centre for
Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
41
|
Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C. High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 2020; 151:111983. [DOI: 10.1016/j.bios.2019.111983] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/09/2023]
|
42
|
Abstract
Counteracting reactive oxygen species (ROS, e.g., superoxide radical ion, H2O2 and hydroxyl radical) is an important task in fighting against oxidative stress-related illnesses and in improving product quality in industrial manufacturing processes. This review focuses on the recent advances on two-dimensional (2D) nanomaterials of antioxidant activity, which are designed for effective decomposition of ROS and thus, for reduction of oxidative stress. Some materials featured in this paper are of uni- or multi-lamellar structures modified with small molecular or enzymatic antioxidants. Others are enzyme-mimicking synthetic compounds (the so-called nanozymes) prepared without antioxidant additives. However, carbon-based materials will not be included, as they were extensively reviewed in the recent past from similar aspects. Given the landmark development around the 2D materials used in various bio-applications, sheet-like antioxidant compounds are of great interest in the scientific and technological communities. Therefore, the authors hope that this review on the recent progresses will be helpful especially for researchers working on novel developments to substantially reduce oxidative stress either in biological systems or industrial liquors.
Collapse
|
43
|
Wang X, Lu J, Tang X, Qiu P. Colorimetric Detection of Uric Acid with High Sensitivity Using Cu2O@Ag Nanocomposites. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00122-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
A Porous Tantalum-Based Metal–Organic Framework (Tα-MOF) as a Novel and Highly Efficient Peroxidase Mimic for Colorimetric Evaluation of the Antioxidant Capacity. Catal Letters 2020. [DOI: 10.1007/s10562-020-03137-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Wang YY, Zhang HF, Wang DH, Sheng N, Zhang GG, Yin L, Sha JQ. Development of a Uricase-Free Colorimetric Biosensor for Uric Acid Based on PPy-Coated Polyoxometalate-Encapsulated Fourfold Helical Metal–Organic Frameworks. ACS Biomater Sci Eng 2020; 6:1438-1448. [DOI: 10.1021/acsbiomaterials.9b01922] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ying-Ying Wang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Hai-Feng Zhang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Dong-Hui Wang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Ning Sheng
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Gong-Guo Zhang
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Ling Yin
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| | - Jing-Quan Sha
- Chemistry and Chemical Engineering Department, Jining University, No. 1 Xingtan Road, Qufu, Shandong 273155, China
| |
Collapse
|
46
|
Chishti B, Fouad H, Seo HK, Alothman OY, Ansari ZA, Ansari SG. ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance. NEW J CHEM 2020. [DOI: 10.1039/c9nj05955e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recyclable nano CeO2 POD mimic records a Km reduction (∼30% and ∼19.72% for TMB and H2O2, respectively) in 900 seconds at pH 4.5. ATP boosts catalytic feasibility in nano CeO2 at physiological pH.
Collapse
Affiliation(s)
- Benazir Chishti
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| | - H. Fouad
- Applied Medical Science Dept. Community College
- King Saud University
- Riyadh 11433
- Saudi Arabia
- Biomedical Engineering Department
| | - H. K. Seo
- School of Chemical Engineering
- Jeonbuk National University
- Jeonju 54896
- South Korea
| | - Othman Y. Alothman
- Chemical Engineering Department
- College of Engineering
- King Saud University
- Riyadh
- Saudi Arabia
| | - Z. A. Ansari
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| | - S. G. Ansari
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| |
Collapse
|
47
|
Electrostatically mediated layer-by-layer assembly of nitrogen-doped graphene/PDDA/gold nanoparticle composites for electrochemical detection of uric acid. Anal Bioanal Chem 2019; 412:669-680. [DOI: 10.1007/s00216-019-02275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/12/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
|
48
|
Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, Du D, Lin Y. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-N x moieties hosted by MOF derived porous carbon. Biosens Bioelectron 2019; 142:111495. [PMID: 31310943 PMCID: PMC8672370 DOI: 10.1016/j.bios.2019.111495] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023]
Abstract
Due to robustness, easy large-scale preparation and low cost, nanomaterials with enzyme-like characteristics (defined as 'nanozymes') are attracting increasing interest for various applications. However, most of currently developed nanozymes show much lower activity in comparison with natural enzymes, and the deficiency greatly hinders their use in sensing and biomedicine. Single-atom catalysts (SACs) offer the unique feature of maximum atomic utilization, providing a potential pathway to improve the catalytic activity of nanozymes. Herein, we propose a Fe-N-C single-atom nanozyme (SAN) that exhibits unprecedented peroxidase-mimicking activity. The SAN consists of atomically dispersed Fe─Nx moieties hosted by metal-organic frameworks (MOF) derived porous carbon. Thanks to the 100% single-atom active Fe dispersion and the large surface area of the porous support, the Fe-N-C SAN provided a specific activity of 57.76 U mg-1, which was almost at the same level as natural horseradish peroxidase (HRP). Attractively, the SAN presented much better storage stability and robustness against harsh environments. As a proof-of-concept application, highly sensitive biosensing of butyrylcholinesterase (BChE) activity using the Fe-N-C SAN as a substitute for natural HRP was further verified.
Collapse
Affiliation(s)
- Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Hangyu Tian
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Shaofang Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Suiqiong Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jordan N Smith
- Health Impacts & Exposure Science, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
49
|
Song H, Ye K, Peng Y, Wang L, Niu X. Facile colorimetric detection of alkaline phosphatase activity based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods. J Mater Chem B 2019; 7:5834-5841. [PMID: 31497839 DOI: 10.1039/c9tb01515a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase (ALP) is widely recognized as a significant biomarker for lots of diseases. For this reason, developing effective and simple methods to monitor ALP activity is strongly necessary. Herein, we propose a novel strategy based on the target-induced valence state regulation of oxidase-mimicking Ce-based nanorods for ALP activity sensing. The mixed-valent Ce-based material (MVCM) with a relatively high Ce(iv)/Ce(iii) ratio can exhibit good oxidase-like activity to trigger the catalytic oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMBox in the presence of O2, resulting in a notable chromogenic reaction. When ALP hydrolyzes ascorbic acid phosphate into ascorbic acid (AA), the formed AA induces the partial reduction of the MVCM to one with a low Ce(iv)/Ce(iii) ratio, which shows much less activity to trigger the chromogenic reaction. According to the above principle, a facile colorimetric assay was developed for ALP activity detection, providing a linear range of 0.5-25 U L-1 and a limit of detection of 0.1 U L-1. Besides, the proposed strategy could offer favorable selectivity for ALP activity determination. Accurate sensing of the target in serum was demonstrated by our assay as well, revealing its promise as a reliable tool for clinical diagnosis.
Collapse
Affiliation(s)
- Hongwei Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China. and School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Kun Ye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yinxian Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Linjie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
50
|
Wang A, Guan C, Shan G, Chen Y, Wang C, Liu Y. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Mikrochim Acta 2019; 186:644. [DOI: 10.1007/s00604-019-3759-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
|