1
|
Cao M, Wei J, Pan Y, Wang L, Li Z, Hu Y, Liang Y, Cao H. Antagonistic mechanisms of bisphenol analogues on the estrogen receptor α in zebrafish embryos: Experimental and computational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159259. [PMID: 36220475 DOI: 10.1016/j.scitotenv.2022.159259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) can disturb the estrogen receptor α (ERα)-mediated signaling pathway, which results in endocrine-disrupting effects and reproductive toxicity. Most BPA analogues as alternatives were evidenced to generate estrogenic activity as agonists or partial agonists of ERα. Recent studies indicated that certain BPA analogues, such as bisphenol M (BPM), bisphenol P (BPP), and bisphenol FL (BPFL), exhibited strong anti-estrogenic effects comparable with the typical antagonist 4-hydroxytamoxifen. However, conflicting findings were also observed for the compounds in different in vitro assays, and whether these BPA analogues can elicit an in vivo effect on ERα at environmentally relevant concentrations remains unknown. The underlying structural basis of estrogenic/anti-estrogenic activity should be further elucidated at the atomic level. To address these issues, we combined zebrafish-based in vivo and in silico methods to assess the effects of the compounds on ERα. The results show that the expressions of ERα-mediated downstream related genes in zebrafish embryos decreased after exposed to the compounds. Further molecular dynamics simulations were used to probe the antagonistic mechanisms of the compounds on ERα. The key H-bonding interactions were identified as important ligand recognition by ERα in the analysis of binding modes and binding free energy calculations. In summary, the current study provides preliminary in vivo evidence of fish species for the anti-estrogenic activity of certain BPA analogues.
Collapse
Affiliation(s)
- Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jinbo Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
2
|
Leng Y, Sun Y, Lv C, Li Z, Yuan C, Zhang J, Li T, Wang Y. Characterization of β-Sitosterol for Potential Selective GR Modulation. Protein Pept Lett 2021; 28:276-281. [PMID: 32798371 DOI: 10.2174/0929866527666200813204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although glucocorticoids (GCs) are characterized as powerful agents to treat inflammatory afflictions, they are accompanied by metabolic side effects which limit their usage. β-Sitosterol, as a minor component found in extraction of vegetable oil, was reported to have anti-inflammatory effects in RAW 264.7 cells. OBJECTIVE To test whether β-sitosterol has an effect to dissociate transrepression from transactivation as a selective novel GR binder, this work evaluated the dissociated characteristics of β-sitosterol. METHODS The probable binding interaction between β-sitosterol and GR was explored by molecular docking. The GR transcriptional activity of β-sitosterol was assessed in the reporter gene assay. The ability of β-sitosterol to modulate the transactivation and transrepression of GR was evaluated by real-time quantitative PCR analysis. RESULTS AND DISCUSSION In the present study, β-sitosterol treatment cannot induce GR-mediated transactivation. β-Sitosterol exerted a potential to inhibited the expression of GR target transrepressed gene without activating the expression of GR transactivation dependent gene. Molecular docking demonstrated that β-Sitosterol was able to bind the ligand binding domain of GR but unable to induce GR activation. CONCLUSION This work offers evidence that β-sitosterol may serve as a selective GR modulator.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Zhuolin Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Cuiping Yuan
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Jie Zhang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| |
Collapse
|
3
|
Chen H, You T, Zong L, Mukhametova LI, Zherdev DO, Eremin SA, Ding Y, Wang M, Hua X. Competitive and noncompetitive fluorescence polarization immunoassays for the detection of benzothiostrobin using FITC-labeled dendrimer-like peptides. Food Chem 2021; 360:130020. [PMID: 34000636 DOI: 10.1016/j.foodchem.2021.130020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Peptides obtained from phage display libraries are valuable reagents for small-molecule immunoassays. However, their application in fluorescence polarization immunoassays (FPIAs) is limited by phage particles. Here, monomer, dendrimer-like dimer, tetramer peptidomimetic and anti-immunocomplex tracers were designed and synthesized using lysine as special scaffolds and spacers to develop competitive and noncompetitive FPIAs for benzothiostrobin. The affinity between tracers and monoclonal antibodies or immunocomplexes increased with the tracer valence. A higher signal-to-noise ratio and sensitivity could be generated in the FPIAs based on tetramer tracers. The sensitivities of competitive (50% inhibitory concentration) and noncompetitive (50% saturation concentration) FPIAs were 19.71 ± 4.65 and 40.43 ± 2.73 ng mL-1, respectively. The spiked recoveries were 78.3%-105.2% with relative standard deviations (RSDs) of 0.7%-15.4% for the competitive FPIA, while 78.7%-115.3% with RSDs of 0.7%-12.5% for the noncompetitive FPIA. The amounts of benzothiostrobin in rice detected by the FPIAs were consistent with those detected by high performance liquid chromatography.
Collapse
Affiliation(s)
- He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Tianyang You
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lingfeng Zong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liliya I Mukhametova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry O Zherdev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei A Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
4
|
Leng Y, Sun Y, Huang W, Lv C, Cui J, Li T, Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep 2021; 48:3145-3154. [PMID: 33881729 DOI: 10.1007/s11033-021-06303-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The potential activities of phthalate esters (PAEs) that interfere with the endocrine system have been focused recently. However, information on modulating the glucocorticoid receptor (GR) of PAEs is scarce. Our aim was to evaluate the agonistic / antagonistic properties of PAEs on human GR. Luciferase reporter gene assay revealed that the tested chemicals displayed no agonistic effects but dicyclohexyl phthalate (DCHP) exerted antagonistic activity in a dose-responsive manner for GR in HeLa cells. The effects of DCHP on dexamethasone (DEX)-induced GR nuclear translocation and gene expression of glucocorticoid-responsive gene expression (G6Pase, PEPCK, FAS, GILZ and MKP-1), as well as protein expression of G6Pase and PEPCK were further examined by RT-qPCR and western blot analysis. DCHP antagonized DEX-induced GR nuclear translocation and suppressed gene expression in both mRNA and protein levels. Furthermore, the results of molecular docking and molecular dynamics simulation showed that DCHP could bind to GR and exhibited potential regulation on this target protein. Collectively, we demonstrate that DCHP may act as a GR antagonist in vitro and is considered to exert endocrine effects via human GR.
Collapse
Affiliation(s)
- Yue Leng
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wei Huang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Chengyu Lv
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Jingyan Cui
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China. .,Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| | - Yongjun Wang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| |
Collapse
|
5
|
Zhang SX, Ding ZM, Ahmad MJ, Wang YS, Duan ZQ, Miao YL, Xiong JJ, Huo LJ. Bisphenol B Exposure Disrupts Mouse Oocyte Meiotic Maturation in vitro Through Affecting Spindle Assembly and Chromosome Alignment. Front Cell Dev Biol 2020; 8:616771. [PMID: 33392205 PMCID: PMC7773771 DOI: 10.3389/fcell.2020.616771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Bisphenol B (BPB), a substitute of bisphenol A (BPA), is widely used in the polycarbonate plastic and resins production. However, BPB proved to be not a safe alternative to BPA, and as an endocrine disruptor, it can harm the health of humans and animals. In the present study, we explored the effects of BPB on mouse oocyte meiotic maturation in vitro. We found that 150 μM of BPB significantly compromised the first polar body extrusion (PBE) and disrupted the cell cycle progression with meiotic arrest. The spindle assembly and chromosome alignment were disordered after BPB exposure, which was further demonstrated by the aberrant localization of p-MAPK. Also, BPB exposure increased the acetylation levels of α-tubulin. As a result, the spindle assemble checkpoint (SAC) was continuously provoked, contributing to meiotic arrest. We further demonstrated that BPB severely induced DNA damage, but the ROS and ATP production were not altered. Furthermore, the epigenetic modifications were changed after BPB exposure, as indicated by increased K3K9me3 and H3K27me3 levels. Besides, the pattern of estrogen receptor α (ERα) dynamics was disrupted with a mass gathering on the spindle in BPB-exposed oocytes. Our collective results indicated that exposure to BPB compromised meiotic maturation and damaged oocyte quality by affecting spindle assembly and chromosome alignment, acetylation of α-tubulin, DNA damage, epigenetic modifications, and ERα dynamics in mouse oocytes.
Collapse
Affiliation(s)
- Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
6
|
Xue P, Zhang G, Zhang J, Ren L. Interaction of flavonoids with serum albumin: A review. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111278. [PMID: 33167830 DOI: 10.2174/1389203721666201109112220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are plant products abundant in every day diet and claimed to be beneficial for human health. After absorption, flavonoids are transported by the serum albumin (SA), the most abundant carrier blood protein, through formation of flavonoids-SA complex. This review deals with the current state of knowledge on flavonoids-SA complex over the past 10 years, mainly involved multi-spectroscopic techniques and molecular dynamics simulation studies to explore the binding mechanism, thermodynamics and structural aspects of flavonoids binding to SA. Especially, the novel method, capillary electrophoresis, high performance affinity chromatography approach, native mass spectrometry and microscale thermophoresis used in characterization of the interaction between flavonoids and SA as well as flavonoid-based fluorescent probe for SA measurement are also included in this review.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Guangjie Zhang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062. China
| |
Collapse
|
7
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
8
|
Liao M, Li Q, Yang Z, Feng T, Xu Z, Liu Q, Liu S. A highly selective and sensitive fluorescence probe for a specific binding site on insect ryanodine receptors. Ann N Y Acad Sci 2020; 1475:43-51. [PMID: 32483859 DOI: 10.1111/nyas.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
There is a significant need to study the binding of active compounds to the specific sites on insect ryanodine receptors (RyRs) that are the targets of two novel classes of diamide insecticides to which insects are becoming increasingly resistant. Here, we describe a rapid assay to study the action of potential compounds on the flubendiamide (Flu) binding site of insect RyRs that uses a fluorescence polarization assay with the fluorescence probe Flu-R-L that we synthesized. The IC50 of Flu for inhibiting probe binding on insect RyR was 18.82 ng/mL. The binding of 86 novel phthalic diamide derivatives on insect RyRs was studied using this newly established assay, and the compounds that exhibited high-affinity binding in the assay also possessed in vivo insecticidal activity against Plutella xylostella. Thus, Flu-R-L is a highly selective and sensitive fluorescence probe for studying the binding affinity of novel compounds to the Flu binding site of insect RyRs. The assay based on Flu-R-L is a rapid, accurate, and sensitive method for the screening of potentially bioactive molecules that bind specifically to insect RyRs.
Collapse
Affiliation(s)
- Min Liao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qibo Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhikun Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Tong Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhiyuan Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shangzhong Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Keminer O, Teigeler M, Kohler M, Wenzel A, Arning J, Kaßner F, Windshügel B, Eilebrecht E. A tiered high-throughput screening approach for evaluation of estrogen and androgen receptor modulation by environmentally relevant bisphenol A substitutes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:134743. [PMID: 31836225 DOI: 10.1016/j.scitotenv.2019.134743] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is a high production volume chemical with a broad application spectrum. As an endocrine disrupting chemical, mainly by modulation of nuclear receptors (NRs), BPA has an adverse impact on organisms and is identified as a substance of very high concern under the European REACH regulation. Various BPA substitution candidates have been developed in recent years, however, information concerning the endocrine disrupting potential of these substances is still incomplete or missing. In this study, we intended to investigate the endocrine potential of BPA substitution candidates used in environmentally relevant applications such as thermal paper or epoxy resins. Based on an extensive literature and patent search, 33 environmentally relevant BPA substitution candidates were identified. In order to evaluate the endocrine potential of the BPA replacements, a screening cascade consisting of biochemical and cell-based assays was employed to investigate substance binding to the NRs estrogen receptor α and β, as well as androgen receptor, co-activator recruitment and NR-mediated reporter gene activation. In addition, a computational docking approach for retrospective prediction of receptor binding was carried out. Our results show that some BPA substitution candidates, for which so far no or only very few data were available, possess a substantial endocrine disrupting potential (TDP, BPZ), while several substances (BPS, D-8, DD70, DMP-OH, TBSA, D4, CBDO, ISO, VITC, DPA, and DOPO) did not reveal any NR binding.
Collapse
Affiliation(s)
- Oliver Keminer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany
| | - Matthias Teigeler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Ecotoxicology, Schmallenberg, Germany
| | - Manfred Kohler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany
| | - Andrea Wenzel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Ecotoxicology, Schmallenberg, Germany
| | - Jürgen Arning
- German Environment Agency UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Franziska Kaßner
- German Environment Agency UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, ScreeningPort, Hamburg, Germany.
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Ecotoxicology, Schmallenberg, Germany.
| |
Collapse
|
10
|
Wang T, Wang Y, Zhuang X, Luan F, Zhao C, Cordeiro MNDS. Interaction of Coumarin Phytoestrogens with ER α and ER β: A Molecular Dynamics Simulation Study. Molecules 2020; 25:E1165. [PMID: 32150902 PMCID: PMC7179152 DOI: 10.3390/molecules25051165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
Coumarin phytoestrogens, as one of the important classes of phytoestrogens, have been proved to play an important role in various fields of human life. In this study, molecular simulation method including molecular docking and molecular dynamics methods were performed to explore the various effects between four classical coumarin phytoestrogens (coumestrol, 4-methoxycoumestrol, psoralen and isopsoralen), and estrogen receptors (ERα, ERβ), respectively. The calculated results not only proved that the four coumarin phytoestrogens have weaker affinity than 17β-estradiol to both ERα, and ERβ, but also pointed out that the selective affinity for ERβ is greater than ERα. In addition, the binding mode indicated that the formation of hydrogen bond and hydrophobic interaction have an important effect on the stability of the complexes. Further, the calculation and decomposition of binding free energy explored the main contribution interactions to the total free energy.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (T.W.); (Y.W.); (X.Z.)
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (T.W.); (Y.W.); (X.Z.)
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (T.W.); (Y.W.); (X.Z.)
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (T.W.); (Y.W.); (X.Z.)
| | - Chunyan Zhao
- School of Pharmacy Lanzhou University, Lanzhou 730000, China;
| | - M. Natália D. S. Cordeiro
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| |
Collapse
|
11
|
Wang P, Wang L, Peng Z, Fu Z. Flow microdialysis sampling-chemiluminescent detection coupled with molecular docking for the investigation of binding behavior between salbutamol and DNA. Talanta 2020; 208:120367. [PMID: 31816709 DOI: 10.1016/j.talanta.2019.120367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/27/2022]
Abstract
The investigation of the binding behavior between drug and DNA provides basic information for understanding pharmacological and toxicologic mechanisms of many drugs. Herein, a facile chemiluminescent (CL) method for investigating the binding behavior between salbutamol and calf thymus DNA (ct-DNA) was established by utilizing flow microdialysis sampling technique. In a reaction equilibrium solution of salbutamol and ct-DNA, free salbutamol was extracted by a microdialysis probe, and then injected into a flow-injection CL detection system to quantitate its concentration. The binding constants of salbutamol acquired by Klotz analysis and Scatchard analysis were 2.97 × 104 M-1and 2.99 × 104 M-1, respectively. Salbutamol showed one sort of binding site on ct-DNA. Meanwhile, the three-dimensional spatial structure of the binding mode was investigated by molecular docking. The results indicate that the binding mode of salbutamol to ct-DNA was groove binding. The hydrogen bonds were primary driving force for the direct recognition of salbutamol by ct-DNA. This proof-of-principle method paves a pathway to investigate the binding behavior between small-molecular drug and DNA, and provides a theoretical guidance for designing DNA-targeting drugs.
Collapse
Affiliation(s)
- Pingshi Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Lin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Zhihong Peng
- Gastroenterology Department, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
12
|
Ponnaiah SK, Prakash P, Muthupandian S. Ultrasonic energy-assisted in-situ synthesis of Ru 0/PANI/g-C 3N 4 nanocomposite: Application for picomolar-level electrochemical detection of endocrine disruptor (Bisphenol-A) in humans and animals. ULTRASONICS SONOCHEMISTRY 2019; 58:104629. [PMID: 31450371 DOI: 10.1016/j.ultsonch.2019.104629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical which resembles structurally the hormone estrogen. Even a trace amount of BPA can bind estrogen receptors resulting in the inducement of reproductive disorders, cancers and problems related to sexual growth such as manliness in female and womanliness in male. So the determination of BPA in human and animal bodies is very essential. For this purpose, a new nanocomposite composed of ruthenium nanoparticles, polyaniline and graphitic carbon nitride (Ru0/PANI/g-C3N4) has been synthesized ultrasonically (40 ± 3 kHz, 200 W). A modification on glassy carbon electrode (GCE) with the nanocomposite detects BPA in human and animal urine samples with wide linear range (0.01-1.1 µM) and the limit of detection is pico molar-level. The synthesized nanocomposite was characterized by Ultraviolet-Visible and Fourier Transform-Infra Red spectroscopies, thermo gravimetric analysis, transmission electron microscopy, X-ray diffraction study, energy dispersive X-ray analysis, and elemental mapping analysis. This sensing system is selective, stable and reusable, by which the detection of BPA in various physiological fluids is very much possible.
Collapse
Affiliation(s)
| | | | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| |
Collapse
|
13
|
Serra H, Beausoleil C, Habert R, Minier C, Picard-Hagen N, Michel C. Evidence for Bisphenol B Endocrine Properties: Scientific and Regulatory Perspectives. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:106001. [PMID: 31617754 PMCID: PMC6867436 DOI: 10.1289/ehp5200] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The substitution of bisphenol A (BPA) by bisphenol B (BPB), a very close structural analog, stresses the need to assess its potential endocrine properties. OBJECTIVE This analysis aimed to investigate whether BPB has endocrine disruptive properties in humans and in wildlife as defined by the World Health Organization (WHO) definition used in the regulatory field, that is, a) adverse effects, b) endocrine activity, and c) plausible mechanistic links between the observed endocrine activity and adverse effects. METHODS We conducted a systematic review to identify BPB adverse effects and endocrine activities by focusing on animal models and in vitro mechanistic studies. The results were grouped by modality (estrogenic, androgenic, thyroid hormone, steroidogenesis-related, or other endocrine activities). After critical analysis of results, lines of evidence were built using a weight-of-evidence approach to establish a biologically plausible link. In addition, the ratio of BPA to BPB potency was reported from studies investigating both bisphenols. RESULTS Among the 36 articles included in the analysis, 3 subchronic studies consistently reported effects of BPB on reproductive function. In rats, the 28-d and 48-week studies showed alteration of spermatogenesis associated with a lower height of the seminiferous tubules, the alteration of several sperm parameters, and a weight loss for the testis, epididymis, and seminal vesicles. In zebrafish, the results of a 21-d reproductive study demonstrated that exposed fish had a lower egg production and a lower hatching rate and viability. The in vitro and in vivo mechanistic data consistently demonstrated BPB's capacity to decrease testosterone production and to exert an estrogenic-like activity similar to or greater than BPA's, both pathways being potentially responsible for spermatogenesis impairment in rats and fish. CONCLUSION The available in vivo, ex vivo, and in vitro data, although limited, coherently indicates that BPB meets the WHO definition of an endocrine disrupting chemical currently used in a regulatory context. https://doi.org/10.1289/EHP5200.
Collapse
Affiliation(s)
- Hélène Serra
- Chemical Substances Assessment Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Maisons-Alfort, France
| | - Claire Beausoleil
- Chemical Substances Assessment Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Maisons-Alfort, France
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut national de la santé et de la recherche médicale (Inserm) U 967 – CEA, Fontenay-aux-Roses, France
| | - Christophe Minier
- UMR I-2 Laboratoire Stress Environnementaux et BIOsurveillance des milieux aquatique (SEBIO), Normandie University, Le Havre, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique (INRA), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d’Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Cécile Michel
- Chemical Substances Assessment Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
14
|
Guan T, Sun Y, Wang Y, Li Z, Li T, Hou L. Multi-Residue Method for the Analysis of Stilbene Estrogens in Milk. Int J Mol Sci 2019; 20:ijms20030744. [PMID: 30744198 PMCID: PMC6387142 DOI: 10.3390/ijms20030744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The rapid analysis of stilbene estrogens is crucially important in the environment, food and health sectors, but quantitation of lower detection limit for stilbene estrogens persists as a severe challenge. We herein described a homologous and sensitive fluorescence polarization (FP) assay based on estrogen receptor α ligand binding domain (ER-LBD) to monitor stilbene estrogens in milk. Under optimal conditions, the half maximal inhibitory concentrations (IC50) of the FP assay were 9.27 nM, 12.94 nM, and 22.38 nM for hexestrol, dienestrol and diethylstilbestrol, respectively. And the corresponding limits of detection (LOD) values were 2.94 nM, 2.89 nM, and 3.12 nM. Finally, the assay was applied to determine the stilbenes in milk samples where the mean recoveries ranged from 95.76% to 112.78% and the coefficients of variation (CV) below 12.00%. Furtherly, we have focused our study on high cross-reactivity phenomena by using two in silico approaches, including molecular docking analysis and topology analysis. Overall, docking results show that several residues in the hydrophobic pocket produce hydrophobic interactions with the tested drug molecules, which contribute to the stability of their binding. In this paper, we conclude that the FP method is suitable for the rapid detection of stilbenes in milk samples, requiring no expensive analytical equipment or time-consuming sample preparation. This work offers a practical approach that applies bioscience technology in food safety testing and improves analytical speed and laboratory efficiency.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| | - Zhuolin Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| | - Tiezhu Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| | - Ligang Hou
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| |
Collapse
|
15
|
Guan T, Sun Y, Li T, Hou L, Zhang J, Wang Y. Estrogen receptor-based multi-residue screening of bisphenol compounds in urine. Biotechnol Appl Biochem 2018; 66:68-73. [PMID: 30307064 DOI: 10.1002/bab.1697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 02/03/2023]
Abstract
Human exposure to bisphenol compounds (BPs) has been implicated in the development of several chronic diseases. Instead of exploiting the traditional methods for determination of BPs, this work confirms that the human estrogen receptor α ligand binding domain (hERα-LBD) is a powerful recognition element that can be used to monitor multi-residue of BPs in urine samples by fluorescence polarization (FP) assay. Test parameters were optimized for the best performance. Under the optimal conditions, the IC50 values of BPs are in the range of 0.04-1.61 μg mL-1 . Recovery experiments were then performed to assess the accuracy and precision of the established method. The results detected by FP assay show good agreements with that of liquid chromatography-tandem mass spectrometry method with a fit of R2 = 0.9372 and 0.9640 for BPE and BPAP, respectively. A computational methodology, ligand-based pharmacophore model, was also employed to further explore the broad-specific of tested compounds. It was found that the two hydrogen bond acceptor features and one hydrophobic aliphatic feature were essential for the corresponding cross-reactivity results from the FP assay. All these results suggest that the established method can be successfully applied to monitor the occurrence of BPs in urine.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yonghai Sun
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Tiezhu Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Ligang Hou
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Jie Zhang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| |
Collapse
|