1
|
Su A, Luo D, Li S, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for T4 polynucleotide kinase activity assay based on host-guest recognition between phosphate pillar[5]arene@MWCNTs and thionine. Analyst 2024; 149:1271-1279. [PMID: 38226548 DOI: 10.1039/d3an01863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
T4 polynucleotide kinase helps with DNA recombination and repair. In this study, an electrochemical biosensor was developed for a T4 polynucleotide kinase activity assay and inhibitor screening based on phosphate pillar[5]arene and multi-walled carbon nanotube nanocomposites. The water-soluble pillar[5]arene was employed as the host to complex thionine guest molecules. The substrate DNA with a 5'-hydroxyl group initially self-assembled on the gold electrode surface through chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 polynucleotide kinase. Titanium dioxide nanoparticles served as a bridge to link phosphorylated DNA and phosphate pillar[5]arene and multi-walled carbon nanotube composite due to strong phosphate-Ti4+-phosphate chemistry. Through supramolecular host-guest recognition, thionine molecules were able to penetrate the pillar[5]arene cavity, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 polynucleotide kinase concentration in the range of 10-5 to 15 U mL-1 with a detection limit of 5 × 10-6 U mL-1. It was also effective in measuring HeLa cell lysate-related T4 polynucleotide kinase activity and inhibitor screening. The proposed method offers a unique sensing platform for kinase activity measurement, holding great potential in nucleotide kinase-target drug development, clinical diagnostics, and inhibitor screening.
Collapse
Affiliation(s)
- Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Shixuan Li
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming 650504, P. R. China.
| |
Collapse
|
2
|
Luo D, Liu Z, Su A, Zhang Y, Wang H, Yang L, Yang W, Pang P. An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 2024; 266:124956. [PMID: 37499362 DOI: 10.1016/j.talanta.2023.124956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
T4 polynucleotide kinase (T4 PNK) is an important DNA repair-related enzyme that plays a crucial role in DNA recombination, replication and damage repair. Herein, an electrochemical biosensor was developed for detection of T4 PNK activity and inhibitor screening based on supramolecular host-guest recognition between phosphate pillar (Dumitrache and McKinnon, 2017) [5] arene (PP5) and methylene blue (MB). The water-soluble PP5 employed as the host for complexation of MB guest molecules. The substrate DNA with 5'-hydroxyl group was first self-assembled on the gold electrode surface through the chemical adsorption of the thiol group, which was phosphorylated in the presence of T4 PNK and adenosine triphosphate (ATP). TiO2 served as a bridge to link phosphorylated DNA and PP5 via the robust phosphate-Ti4+-phosphate chemistry. The immobilized PP5 captured the MB on electrode surface via the supramolecular host-guest recognition interaction, resulting in an enhanced electrochemical response signal. The electrochemical signal is proportional to the T4 PNK concentration in the range of 2 × 10-4 to 5 U mL-1 with a detection limit of 1 × 10-4 U mL-1. It was also successfully used for PNK inhibitor screening and PNK activity assay in HeLa cell lysates sample. The proposed strategy provides a novel sensing platform for kinase activity assay and inhibitor screening, holding a great potential in clinical diagnostics, inhibitor screening, and nucleotide kinase-target drug discovery.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zaiqiong Liu
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Aiwen Su
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Yanli Zhang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China
| | - Lijuan Yang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3217, Australia
| | - Pengfei Pang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650504, PR China.
| |
Collapse
|
3
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
4
|
Alam M, Agashe C, Gill AK, Varshney R, Tiwari N, Patra D. Discrimination of enantiomers and constitutional isomers by self-generated macroscopic fluid flow. Chem Commun (Camb) 2023; 59:434-437. [PMID: 36515131 DOI: 10.1039/d2cc05545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The amplification of weak molecular signals to visible output could provide a gateway to the macroscopic world. In this context, supramolecular interfaces were designed by depositing macrocyclic "host" molecules in a multilayer film that can be utilized to discriminate isomers by their fluid flow response upon "host-guest" molecular recognition.
Collapse
Affiliation(s)
- Mujeeb Alam
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Chinmayee Agashe
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Rohit Varshney
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Naveen Tiwari
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Debabrata Patra
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Preparation and Application of Coal-Liquefaction-Residue-Based Carbon Material. Processes (Basel) 2022. [DOI: 10.3390/pr10112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P-Nitrophenol (4-NP) is a high toxicity material and has harmful effects on the environment. Thus, the analysis of 4-NP is an important topic at present. In this work, the fabrication of a novel electrochemical sensor based on coal-liquefaction-residue (CLR)-derived porous carbon (PC) materials. CLR-based porous carbon material was prepared by the high-temperature carbonization method and the morphology and structure of the materials were characterized by scanning electron microscopy and other characterization methods. Subsequently, the electrochemical properties of the modified electrodes were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements. The results showed that under optimal conditions, the sensor had a good electrochemical performance for environmental pollutant 4-NP. In particular, the linear range of the sensor was 10–200 μmol·L-1 and the detection limit was 1.169 μmol·L−1 on the basis of the signal-to-noise ratio S/N = 3. The electrode showed excellent stability, reproducibility and repetitiveness and the sensor also had good selectivity. In addition, the newly constructed sensor exhibited adsorption-controlled kinetics and the recovery rate of 4-NP in actual water samples could reach 90.06~95.17%, indicating that the sensor had good practical application prospects.
Collapse
|
6
|
Facile fluorescent detection of o-nitrophenol by a cucurbit[8]uril-based supramolecular assembly in aqueous media. Anal Chim Acta 2022; 1226:340262. [DOI: 10.1016/j.aca.2022.340262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
|
7
|
|
8
|
Liu X, Cui G, Dong L, Wang X, Zhen Q, Sun Y, Ma S, Zhang C, Pang H. Synchronous electrochemical detection of dopamine and uric acid by a PMo12@MIL-100(Fe)@PVP nanocomposite. Anal Biochem 2022; 648:114670. [PMID: 35367219 DOI: 10.1016/j.ab.2022.114670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/01/2022]
Abstract
In this work, a noble-metal-free composite electrode was prepared based on PMo12O403- (PMo12), C9H5FeO7 (MIL-100(Fe), a Fe-based metal organic framework) and polyvinylpyrrolidone (PVP), and served as a high performance electrochemical sensor for synchronous detection of dopamine (DA) and uric acid (UA). The PMo12@MIL-100(Fe)@PVP composite electrode was fabricated by a in-situ hydrothermal method. Thanks to the synergistic effect of three active components (PMo12, MIL-100 and PVP), the electrode possesses large specific surface area and high electrical conductivity and therefore it shows high electrocatalytic oxidation performance of DA and UA with a spacing of 0.146 V between the two peak positions. These benefits of the electrode enable its electrochemical sensor to synchronously detect of DA and UA. Namely, the linear ranges can achieve 1-247 μM for DA and 5-406 μM for UA. Meanwhile, the detection limits are 0.586 μM for DA and 0.372 μM for UA. Moreover, the sensor can be applied to simultaneous determination of UA and DA in human serums with satisfactory recovery values.
Collapse
|
9
|
Liu S, Yu Y, Ni K, Liu T, Gu M, Wu Y, Du G, Ran X. Construction of a novel electrochemical sensor based on biomass material nanocellulose and its detection of acetaminophen. RSC Adv 2022; 12:27736-27745. [PMID: 36320243 PMCID: PMC9516959 DOI: 10.1039/d2ra04125a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection. There are negatively charged acidic sulfate groups on the surface of CNCs, which can enhance the electrostatic repulsion between nanoparticles, thereby increasing the stability and dispersibility of AgNPs in the system, making them less prone to agglomeration. Cationic pillar[5]arene (CP5) with a strong host–guest effect was used as a stable ligand for silver nanoparticles (AgNPs). AgNPs have good electrical conductivity and large specific surface area, which can significantly increase the peak current. In addition, CP5 has excellent supramolecular recognition performance, which can specifically recognize the guest molecule AP to form an inclusion complex, so that a large number of AP molecules are attached to the electrode surface, which is beneficial to the amplification of electrochemical signals. The prepared sensor is more attractive in terms of sensitivity and recognition performance; the host–guest binding constant was (3.37 ± 0.26) × 104 M−1, which can be obtained with good linearity (R2 = 0.996), low detection limit (90 nM, LOD = 3σ/k, S/N = 3) and a wide linear range (0.5–500 μM). The electrochemical sensor showed good performance in quantitative analysis, stability, selectivity, reproducibility, and actual sample detection, providing high feasibility for real-time monitoring of paracetamol; it also provides a new idea for a green sensor. In this work, acidic sulfated cellulose nanocrystals (CNCs) were used as green carriers, and a novel composite material was synthesized and used to design sensors for paracetamol (AP) detection.![]()
Collapse
Affiliation(s)
- Sichen Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yanbo Yu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Kelu Ni
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Tongda Liu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Min Gu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yingchen Wu
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- International Joint Research Center for Biomass Materials, Yunnan Province Key Lab of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
10
|
Peng X, Wang Y, Luo Z, Zhang B, Mei X, Yang X. Facile synthesis of fluorescent sulfur quantum dots for selective detection of p-nitrophenol in water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
12
|
Deng P, Wang W, Liu X, Wang L, Yan Y. A hydrophobic polymer stabilized CsPbBr 3 sensor for environmental pollutant detection. NEW J CHEM 2021. [DOI: 10.1039/d0nj04498a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of o-nitrophenol in the environment is of great significance to environmental protection.
Collapse
Affiliation(s)
- Pengyin Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials
- Jilin Normal University
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Wei Wang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- 130022 Changchun
- P. R. China
| | - Xiqing Liu
- School of Material Science and Engineering
- Jiangsu University
- 212013 Zhenjiang
- P. R. China
| | - Liang Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials
- Jilin Normal University
- Ministry of Education
- Changchun 130103
- P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- 212013 Zhenjiang
- P. R. China
| |
Collapse
|
13
|
Recent developments for the investigation of chiral properties and applications of pillar[5]arenes in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Construction of an ultra-sensitive electrochemical sensor based on polyoxometalates decorated with CNTs and AuCo nanoparticles for the voltammetric simultaneous determination of dopamine and uric acid. Mikrochim Acta 2020; 187:483. [DOI: 10.1007/s00604-020-04446-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 02/03/2023]
|
15
|
Duan Q, Wang L, Wang F, Zhang H, Lu K. Calix[n]arene/Pillar[n]arene-Functionalized Graphene Nanocomposites and Their Applications. Front Chem 2020; 8:504. [PMID: 32596211 PMCID: PMC7304259 DOI: 10.3389/fchem.2020.00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Calix[n]arenes and pillar[n]arenes, which contain repeating units of phenol and methane, are class of synthetic cyclic supramolecules. Their rigid structure, tunable cavity size, flexible functionalization, and rich host-guest properties make them ideal surface modifiers to construct functional hybrid materials. Introduction of the calix[n]arene/pillar[n]arene species to the graphene may bring new interesting or enhanced physicochemical/biological properties by combining their individual characteristics. Reported methods for the surface modification of graphene with calix[n]arene/pillar[n]arene utilize either covalent or non-covalent approaches. This mini-review presents the recent advancements in the functionalization of graphene nanomaterials with calix[n]arene/pillar[n]arene and their applications. At the end, the future outlook and challenges for the continued research of calix[n]arene/pillar[n]arene-functionalized graphene nanohybrids in the development of applied nanoscience are thoroughly discussed.
Collapse
Affiliation(s)
- Qunpeng Duan
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Lijie Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Fei Wang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Hongsong Zhang
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
| | - Kui Lu
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, China
- School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, China
| |
Collapse
|
16
|
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Tan X, Zeng W, Fan Y, Yan J, Zhao G. Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics. NANOTECHNOLOGY 2020; 31:135705. [PMID: 31816606 DOI: 10.1088/1361-6528/ab5ff5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
While tremendous advancements in 2D materials anchoring Au nanoparticles have been made, it is an urgent challenge to explore a green and facile approach for obtaining small-size Au nanoparticles. The rise of 2D covalent organic framework (COF) presents more-promising candidates for constructing excellent sites for loading metal nanoparticles. In this study, a novel 2D heterogeneous hybrid nanomaterial (P6-Au-COF) based on COF and pillar[6]arene (P6) reduced Au nanoparticles (P6-Au) is prepared by a simple and green procedure. The Au nanoparticles with an average small diameter of 2-3 nm are homogeneously dispersed on the surface of the COF. The P6-Au-COF hybrid material shows highly catalytic performance for the reduction of nitrophenol isomers when compared with commercial Pd/C catalyst and other reported materials. The P6-Au-COF hybrid material exhibits durable recyclablility and stability during the catalytic reaction. Considering the outstanding merits of the heterogeneous 2D catalyst of P6-Au-COF as well as the simple and green preparation, this research might not only present enormous opportunities for stabilized, high-performance and sustainable catalysts, but be applied in other frontier study of sustainable functionalized nanocomposites and advanced materials.
Collapse
|
18
|
Tan X, Xu J, Huang T, Wang S, Yuan M, Zhao G. Graphdiyne bearing pillar[5]arene-reduced Au nanoparticles for enhanced catalytic performance towards the reduction of 4-nitrophenol and methylene blue. RSC Adv 2019; 9:38372-38380. [PMID: 35540210 PMCID: PMC9075914 DOI: 10.1039/c9ra07347g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
Graphdiyne (GD), a novel two dimensional (2D) carbon material, has earned a lot of attention in recent years. Constructing a novel hybrid nanomaterial based on GD, macrocyclic host and Au nanoparticles is an effective strategy for heterogeneous catalysis applications. While tremendous advancements in the preparation of two dimensional (2D) materials anchoring Au nanoparticles have been made, it is an urgent requirement to explore a green, efficient and facile approach for obtaining small-sized Au nanoparticles. The use of the 2D material graphdiyne (GD) presents more-promising candidates for constructing excellent sites for loading metal nanoparticles. In this study, a novel 2D heterogeneous hybrid nanomaterial (P5A-Au-GD) based on GD and pillar[5]arene (P5A)-reduced Au nanoparticles (P5A-Au) was successfully prepared. In this strategy, the P5A can reduce HAuCl4 with the aid of NaOH in the dispersion of GD. Accordingly, the generated P5A-Au can immediately interact with GD to form the P5A-Au-GD hybrid nanomaterial without any harsh reduced materials or other energies. The Au nanoparticles with average diameter of 2-3 nm are homogeneously dispersed on the surface of GD. The heterogeneous 2D catalyst of P5A-Au-GD shows high catalytic performances in the reduction of 4-nitrophenol and methylene blue by comparing commercial Pd/C catalyst. Meanwhile, the unique 2D heterogeneous hybrid material P5A-Au-GD exhibits durable recyclability and stability during the catalytic reaction. Considering the outstanding merits of the heterogeneous 2D catalyst of P5A-Au-GD as well as the simple and green preparation, this study might not only present enormous opportunities for the stabilized, high-performance and sustainable catalysts but also be applied in other frontier studies of sustainable functionalized nanocomposites and advanced materials.
Collapse
Affiliation(s)
- Xiaoping Tan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Jianhua Xu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Ting Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Sheng Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Maojie Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Genfu Zhao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| |
Collapse
|
19
|
Fa S, Kakuta T, Yamagishi TA, Ogoshi T. One-, Two-, and Three-Dimensional Supramolecular Assemblies Based on Tubular and Regular Polygonal Structures of Pillar[n]arenes. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pillar[ n]arenes, which were first reported by our group in 2008, are promising macrocyclic compounds in supramolecular chemistry. The simple, tubular, and highly symmetrical shape of pillar[ n]arenes has allowed various supramolecular assemblies with well-defined structures to be constructed. The pillar-shaped structures of pillar[ n]arenes are suitable for surface modification and formation of one-dimensional (1D) channels. The regular polygonal prism shape of organized pillar[ n]arenes contributes to the construction of highly assembled structures such as two-dimensional (2D) sheets and three-dimensional (3D) spheres. In this minireview, we describe supramolecular assemblies with various dimensions. First, we discuss 1D supramolecular assemblies based on tubular structures of pillar[ n]arenes. Second, 2D supramolecular sheet formation based on regular polygonal structures is described. Finally, 3D supramolecular assemblies such as vesicles and 3D frameworks constructed from pillar[ n]arenes are discussed.
Collapse
Affiliation(s)
- Shixin Fa
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Takahiro Kakuta
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | | | - Tomoki Ogoshi
- 1WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| |
Collapse
|
20
|
Kaizerman-Kane D, Hadar M, Granot E, Patolsky F, Zafrani Y, Cohen Y. Shape induced sorting via rim-to-rim complementarity in the formation of pillar[5, 6]arene-based supramolecular organogels. Org Chem Front 2019. [DOI: 10.1039/c9qo00717b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first two-component rim-to-rim pillar[6]arene-based supramolecular organogels were prepared. Shape complementarity was found to be an important determinant in the formation of such gels which also show shape-induced sorting in their formation.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Maya Hadar
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Eran Granot
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Fernando Patolsky
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yossi Zafrani
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yoram Cohen
- School of Chemistry
- The Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
21
|
Lu Z, Lu X, Zhong Y, Hu Y, Li G, Zhang R. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols. Anal Chim Acta 2018; 1050:146-153. [PMID: 30661582 DOI: 10.1016/j.aca.2018.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Isomers discrimination plays a vital role in modern chemistry, and development of efficient and rapid method to achieve this aim has attracted a great deal of interest. In this work, a novel carbon dot-decorated chiral porous organic cage hybrid nanocomposite (CD@RCC3) was prepared and used to fabricate fluorescent sensor. The resultant CD@RCC3 was characterized by using a range of techniques, finding that CD@RCC3 possesses strong and stable fluorescent property in common organic solvents, especially it exhibits chiral property. The potential application of CD@RCC3 in fluorescence sensing was demonstrated by isomers discrimination. The designed sensor was successfully used to rapid discriminate nitrophenol isomers. Meanwhile, it exhibited differentiation ability towards phenylalaninol and phenylethanol enantiomers. Our work enriches the type of synthetic materials for fluorescence sensing, and provides a simple method for distinguishing structural isomers and chiral isomers.
Collapse
Affiliation(s)
- Zhenyu Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaotian Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Runkun Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|