1
|
Xu X, Lu Y, Liu D, Zhang L, Zheng L, Nie G. Highly efficient photoelectrochemical aptasensor based on CdS/CdTe QDs co-sensitized TiO 2 nanoparticles designed for thrombin detection. Mikrochim Acta 2024; 191:216. [PMID: 38517549 DOI: 10.1007/s00604-024-06279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/24/2024]
Abstract
A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.
Collapse
Affiliation(s)
- Xuejiao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yan Lu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lu Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Lu Zheng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
2
|
Gao J, Gao L, Tang Y, Li F. Homogeneous protein assays mediated by dynamic DNA nanotechnology. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Driven by recent advances in DNA nanotechnology, analytical methods have been greatly improved for designing simple and homogeneous assays for proteins. The translation from target proteins to DNA outputs dramatically enhances the sensitivity of protein assays. More importantly, the protein-responsive DNA nanotechnology has offered diverse assay mechanisms, allowing flexible assay designs and high sensitivity without the need for sophisticated operational procedures. This review will focus on the design principles and mechanistic insight of analytical assays mediated by protein-responsive DNA nanotechnology, which will serve a general guide for assay design and applications.
Collapse
Affiliation(s)
- Jiajie Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lu Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Yanan Tang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ONL2S 3A1, Canada
| |
Collapse
|
3
|
Abstract
Thrombin facilitates the aggregation of platelet in hemostatic processes and participates in the regulation of cell signaling. Therefore, the development of thrombin sensors is conducive to comprehending the role of thrombin in the course of a disease. Biosensors based on aptamers screened by SELEX have exhibited superiority for thrombin detection. In this review, we summarized the aptamer-based sensors for thrombin detection which rely on the specific recognitions between thrombin and aptamer. Meanwhile, the unique advantages of different sensors including optical and electrochemical sensors were also highlighted. Especially, these sensors based on electrochemistry have the potential to be miniaturized, and thus have gained comprehensive attention. Furthermore, concerns about aptamer-based sensors for thrombin detection, prospects of the future and promising avenues in this field were also presented.
Collapse
|
4
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
A label-free and enzyme-free fluorescent aptasensor for amplified detection of kanamycin in milk sample based on target-triggered catalytic hairpin assembly. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Ling P, Wang L, Cheng S, Gao X, Sun X, Gao F. Ultrasensitive electrochemical biosensor for protein detection based on target-triggering cascade enzyme-free signal amplification strategy. Anal Chim Acta 2022; 1202:339675. [DOI: 10.1016/j.aca.2022.339675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
|
7
|
Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 2022; 195:113661. [PMID: 34592501 DOI: 10.1016/j.bios.2021.113661] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023]
Abstract
Aptamer-based dual recognition strategy, using dual aptamers or the cooperation of aptamers with other recognition elements, can better utilize the advantages of each recognition molecule and increase the design flexibility to effectively overcome the limitations of a single molecule recognition strategy, thereby improving the sensitivity and selectivity and facilitating the regulation of biological process. Hence, this review systematically tracks the construction and application of dual aptamers recognition strategy in the versatile detection of protein biomarkers, pathogenic microorganisms, cancer cells, and the treatment of some diseases and, more importantly, in functional regulation and imaging of cell-surface protein receptors. Then, the cooperation of aptamers with other recognition elements are briefly introduced. Potential challenges facing this field have been highlighted, aiming to expand bioanalytical applications of aptamer-based dual or multiple recognition strategies and meet the growing demand for precision medicine.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinlian Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Ma H, Lu S, Xie Q, Wang T, Lu H, Yu L. A stable liquid crystals sensing platform decorated with cationic surfactant for detecting thrombin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Chen J, Zhu D, Huang T, Yang Z, Liu B, Sun M, Chen JX, Dai Z, Zou X. Isothermal Self-Primer EXPonential Amplification Reaction (SPEXPAR) for Highly Sensitive Detection of Single-Stranded Nucleic Acids and Proteins. Anal Chem 2021; 93:12707-12713. [PMID: 34491714 DOI: 10.1021/acs.analchem.1c02588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Development of versatile sensing methods for sensitive and specific detection of clinically relevant nucleic acids and proteins is of great value for disease monitoring and diagnosis. In this work, we propose a novel isothermal Self-primer EXPonential Amplification Reaction (SPEXPAR) strategy based on a rationally engineered structure-switchable Metastable Hairpin template (MH-template). The MH-template initially keeps inactive with its self-primer overhanging a part of target recognition region to inhibit polymerization. The present targets can specifically compel the MH-template to transform into an "activate" conformation that primes a target-recyclable EXPAR. The method is simple and sensitive, can accurately and facilely detect long-chain single-stranded nucleic acids or proteins without the need of exogenous primer probes, and has a high amplification efficiency theoretically more than 2n. For a proof-of-concept demonstration, the SPEXPAR method was used to sensitively detect the characteristic sequence of the typical swine fever virus (CSFV) RNA and thrombin, as nucleic acid and protein models, with limits of detection down to 43 aM and 39 fM, respectively, and even the CSFV RNA in attenuated vaccine samples and thrombin in diluted serum samples. The SPEXPAR method may serve as a powerful technique for the biological research of single-stranded nucleic acids and proteins.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Daozhong Zhu
- Guangzhou Customs Technology Center, Guangzhou 510623, P. R. China
| | - Ting Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zizhong Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Birong Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Mengxu Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jin-Xiang Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zong Dai
- Key Laboratory of Sensing Techno logy and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
Electrochemical aptasensor based on proximity binding-induced DNA networked for enzyme-free and ultrasensitive detection of thrombin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Wu C, Zhang Q, Li D, Tang X, Xie F, Zhang Y, Lu Y. A Sensitive Signal‐off Electrochemical Aptasensor for Thrombin Detection using PB−Au@MoS
2
Nanomaterial as Both Platform and Signal Reporter. ELECTROANAL 2021. [DOI: 10.1002/elan.202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chao Wu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Qiaran Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Duo Li
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Xuehui Tang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Fei Xie
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Yue Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Yizhong Lu
- School of Materials Science and Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|
12
|
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Anal Chem 2021; 93:198-214. [PMID: 33147015 PMCID: PMC7855502 DOI: 10.1021/acs.analchem.0c04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Bezuneh TT, Fereja TH, Addisu Kitte S, Li H, Jin Y. Enzyme-free signal amplified Au nanoparticle fluorescence detection of thrombin via target-triggered catalytic hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Cui H, Wu W, Xu H, Cao H, Hong N, Cheng L, Liao F, Jiang Y, Ma G, Fan H. A homogeneous strategy of target-triggered catalytic hairpin assembly for thrombin signal amplification. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
He Z, Wu J, Qiao B, Pei H, Xia Q, Wu Q, Ju H. Target-Catalyzed Assembly of Pyrene-Labeled Hairpins for Exponentially Amplified Biosensing. ACS APPLIED BIO MATERIALS 2020; 3:5342-5349. [PMID: 35021708 DOI: 10.1021/acsabm.0c00658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rapid and sensitive detection of nucleic acids is vital for disease diagnosis. This work designed an enzyme-free isothermal strategy for rapid exponential signal amplification through target-triggered catalytic hairpin assembly (CHA) to induce the spatially sensitive fluorescent signal of the pyrene excimer. Functionally, this system consisted of three pyrene labelled hairpins (H1, H2, and H3) and one catalyst DNA C. In the presence of C, the CHA was activated to generate intermediate I, which contained a single-stranded region identical to the C sequence for initiating the second cycle of CHA to obtain 2I and thus achieved the exponential formation of I along with the switching of pyrene excimer. The fluorescent signal of the pyrene excimer could be further enhanced via the inclusion of γ-cyclodextrin and showed a linear increase upon increasing logarithm of C concentration. Through the introduction of a helping hairpin H4-containing C sequence and a region specific to the target, this strategy could be extended to realize the quick and sensitive detection of different analytes. Using dengue virus RNA as an analyte model, the proposed fluorescent method showed a linear range from 0.1 to 50 nM with a limit of detection of 0.048 nM at 3σ and good selectivity. The excellent performance and convenient operation demonstrated its promising application in clinical disease diagnosis.
Collapse
Affiliation(s)
- Zhengqing He
- School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Qiao
- School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Hua Pei
- School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Qianfeng Xia
- School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Qiang Wu
- School of Tropical Medicine and Laboratory Medicine, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Zhang H, Yang L, Zhu X, Wang Y, Yang H, Wang Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv Healthc Mater 2020; 9:e2000364. [PMID: 32406199 DOI: 10.1002/adhm.202000364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive detection of thrombin is imperative for the early diagnosis, prevention, and treatment of thrombin-related diseases. Here, an ultrasensitive and rapid thrombin biosensor is developed based on rationally designed trifunctional protein HTs, comprising three functional units, including a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site (TCS). smURFP is used as a detection signal to eliminate any interference from the autofluorescence of sample matrix to increase detection sensitivity. HGFI serve as an adhesive unit to allow rapid immobilization of HTs on a multiwall plate. The TCS linking HGFI and smURFP function as a sensing element to recognize and detect thrombin. HTs immobilization is symmetrically optimized and characterized. Thrombin assay reveals the specific recognition of active thrombin in samples and the hydrolysis of the immobilized HTs, resulting in a decrease in the fluorescence intensity of the sample in a thrombin concentration-dependent manner. The limit of detection (LOD) is as low as 0.2 am in the serum. To the authors' knowledge, this is the lowest LOD ever reported for any thrombin biosensor. This study sheds light on the engineering of multifunctional proteins for biosensing.
Collapse
Affiliation(s)
- Huayue Zhang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Lu Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Xiaqing Zhu
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Yanyan Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Haitao Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| | - Zefang Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| |
Collapse
|
17
|
Sun Y, Zhu X, Liu H, Dai Y, Han R, Gao D, Luo C, Wang X, Wei Q. Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5569-5577. [PMID: 31933352 DOI: 10.1021/acsami.9b20255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Thrombin is a marker of blood-related diseases, and its detection is of great significance in the fields of medical and biological research. Herein, a novel chemiluminescence (CL) sensor for thrombin detection was prepared based on dual-aptamer biorecognition and mesoporous silica encapsulated with iron porphyrin. Mesoporous silica encapsulated with hematin by aptamer1 (Apt1/hematin/M-SiO2) and magnetic microspheres modified with aptamer2 (Apt2/NH2-MS) were successfully prepared, and the two materials were used to construct a CL sensor to detect thrombin. Primarily, Apt2/NH2-MS is used for pretreatment separation of thrombin samples by the biorecognition effect between the aptamer (Apt2) and target (thrombin). Then, thrombin/Apt2/NH2-MS is again recognized with Apt1 on the surface of Apt1/hematin/M-SiO2 and Apt1/thrombin/Apt2/NH2-MS is formed, so dual-aptamer biorecognition is realized. Meanwhile, the generated Apt1/thrombin/Apt2/NH2-MS makes Apt1 shed off the surface of M-SiO2 and release hematin. The released hematin can catalyze the luminol-H2O2 CL reaction. Therefore, a sandwich-type CL sensor was constructed based on dual-aptamer biorecognition and hematin catalysis for the detection of thrombin. The sensor has a linear range of 7.5 × 10-15 to 2.5 × 10-10 mol·L-1 and a detection limit of 2.2 × 10-15 mol·L-1 and also exhibits excellent selectivity, reproducibility, and stability. The sensor was successfully used for the detection of thrombin in serum samples, which makes it possible to apply the sensor in the detection of thrombin in actual samples.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Rui Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Dandan Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| |
Collapse
|
18
|
Zhang T, Xu L, Jiang B, Yuan R, Xiang Y. Polymerization nicking-triggered LAMP cascades enable exceptional signal amplification for aptamer-based label-free detection of trace proteins in human serum. Anal Chim Acta 2019; 1098:164-169. [PMID: 31948580 DOI: 10.1016/j.aca.2019.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Detecting molecular biomarkers in high sensitivity plays an important role in the diagnosis of various diseases at the early stage. Here, by combining the target-induced polymerization nicking reaction (TIPNR) with the loop-mediated isothermal amplification (LAMP), we describe an ultrasensitive and label-free aptamer-based sensing method for detecting low levels of proteins in human serum by using thrombin as the model target analyte. The target thrombin binds and causes spontaneous assembly of two distinct aptamer probes to form the templates for the polymerization nicking reaction recycling amplification to produce many forward inner primer sequences. Subsequently, downstream LAMP reactions are initiated by these sequences for the generation of tremendous DNA hairpins with various lengths via automated cyclic strand displacement reactions. The SYBR Green I organic dye further binds the many hairpins to show drastically amplified fluorescence for ultrasensitive detection of thrombin down to 3.6 fM in the linear range from 0.01 pM to 10 nM. Such a sensing method based on aptamers has high discrimination capability for the target molecules against other non-specific proteins and is applicable for diluted serum samples. With the successful demonstration of the substantial signal amplification ability and simplicity feature of this assay approach, highly sensitive and convenient detection of other disease biomarkers with this method can be envisioned in the near future.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lin Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
20
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Chai H, Cheng W, Xu L, Gui H, He J, Miao P. Fabrication of Polymeric Ferrocene Nanoparticles for Electrochemical Aptasensing of Protein with Target-Catalyzed Hairpin Assembly. Anal Chem 2019; 91:9940-9945. [DOI: 10.1021/acs.analchem.9b01673] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Jihua Laboratory, Foshan 528200, People’s Republic of China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Tianjin Guokeyigong Science and Technology Development Co., Ltd., Tianjin 300399, People’s Republic of China
| | - Lei Xu
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Huiqiang Gui
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou 215123, People’s Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People’s Republic of China
- Jihua Laboratory, Foshan 528200, People’s Republic of China
| |
Collapse
|
22
|
Yang L, Zhong X, Huang L, Deng H, Yuan R, Yuan Y. C 60@C 3N 4 nanocomposites as quencher for signal-off photoelectrochemical aptasensor with Au nanoparticle decorated perylene tetracarboxylic acid as platform. Anal Chim Acta 2019; 1077:281-287. [PMID: 31307720 DOI: 10.1016/j.aca.2019.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/03/2023]
Abstract
Herein, a novel signal-off photoelectrochemical (PEC) aptasensor was proposed for sensitive detection of thrombin on the basis of C60@C3N4 nanocomposites as quencher and Au nanoparticles (depAu) decorated perylene tetracarboxylic acid (PTCA) as sensing platform. Owing to the excellent membrane-forming of PTCA and superior conductivity of depAu, the PTCA between two depAu layers can simply and effectively produce an extremely high initial photocurrent to afford a precondition for sensitive biodetection. Thereafter, the assembly of C60@C3N4 nanocomposites on electrode via typical sandwich reaction enabled the generation of a significantly decreased photocurrent. Here, the C3N4 with high surface area not only provided massive binding sites for C60 immobilization, but also partly competed with PTCA in light absorption for producing a significantly smaller photocurrent in the presence of electron donor ascorbic acid (AA). Additionally, both the C3N4 and C60 have the poor conductivity, which could inhibit the electron transfer to achieve a further decreased photocurrent, effectively improving the sensitivity of proposed biosensor. As a result, the PEC biosensor in a "signal-off" mode showed an extremely low detection limit down to 1.5 fM, providing a sensitive and universal strategy for protein detection.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Liaojing Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Hanmei Deng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Wu H, Li M, Wang Z, Yu H, Han J, Xie G, Chen S. Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Anal Chim Acta 2018; 1049:74-81. [PMID: 30612659 DOI: 10.1016/j.aca.2018.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
Electroactive metal-organic frameworks (MOFs) with large surface area and manipulatable structural properties show promise as a new type of signal probe for electrochemical biosensing application. In this work, an electroactive Ni-MOF, assembled by the redox-active ligands 4,4',4″-Tricarboxytriphenylamine (H3TCA), a triphenylamine derivatives, as the electroactive source and magnetic ordered Ni4O4 clusters as electronic transport nodes, is first designed and applied for electrochemical aptasensing of thrombin (Tb). The designed Ni-MOF probe realizes a stable and sensitive electrochemical signal output based on simple sandwich-type aptasensing because the high-content TCA active sites and good magnetic ordered intermediate of Ni4O4 clusters are periodically arranged in well-defined porous structure of the MOF. The Ni-MOF probe assembled by redox-active ligand presents the high stability and can be directly applied in electrochemical aptasensor, avoiding any post-modification and the addition of redox mediators. As a result, the constructed electrochemical aptasensor shows a wide linear relationship for Tb from 0.05 pM to 50 nM and a detection limit of 0.016 pM (S/N = 3). Furthermore, the proposed aptasensor is successfully applied to analysis of target Tb in real serum sample with satisfactory results. The present work indicates that fabricating a redox-active organic molecule in functionalized MOFs offer a feasible strategy to design high-stable electroactive MOFs for construction of electrochemical biosensors with simplicity, high selectivity and sensitivity.
Collapse
Affiliation(s)
- Haipeng Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Min Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Zhen Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Hua Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| |
Collapse
|