1
|
Mishra PK, Kaur P. Future-ready technologies for sensing the stemness of circulating tumor cells. Nanomedicine (Lond) 2023; 18:1327-1330. [PMID: 37585672 DOI: 10.2217/nnm-2023-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Affiliation(s)
- Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Prasan Kaur
- Division of Environmental Biotechnology, Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| |
Collapse
|
2
|
Kajani AA, Rafiee L, Samandari M, Mehrgardi MA, Zarrin B, Javanmard SH. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv 2022; 12:32834-32843. [PMID: 36425208 PMCID: PMC9667373 DOI: 10.1039/d2ra05930d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Facile and sensitive detection and isolation of circulating tumor cells (CTCs) was achieved using the aptamer-targeted magnetic nanoparticles (Apt-MNPs) in conjugation with a microfluidic device. Apt-MNPs were developed by the covalent attachment of anti-MUC1 aptamer to the silica-coated magnetic nanoparticles via the glutaraldehyde linkers. Apt-MNPs displayed high stability and functionality after 6 months of storage at 4 °C. The specific microfluidic device consisting of mixing, sorting and separation modules was fabricated through conventional photo- and soft-lithography by using polydimethylsiloxane. The capture efficiency of Apt-MNPs was first studied in vitro on MCF-7 and MDA-MB-231 cancer cell lines in the bulk and microfluidic platforms. The cell capture yields of more than 91% were obtained at the optimum condition after 60 minutes of exposure to 50 μg mL-1 Apt-MNPs with 10 to 106 cancer cells in different media. CTCs were also isolated efficiently from the blood samples of breast cancer patients and successfully propagated in vitro. The isolated CTCs were further characterized using immunofluorescence staining. The overall results indicated the high potential of the present method for the detection and capture of CTCs.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Mohamadmahdi Samandari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
- Department of Biomedical Engineering, University of Connecticut Farmington CT 06030 USA
| | | | - Bahare Zarrin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran +98-3136692836 +98-3137929128
| |
Collapse
|
3
|
Li C, Yang S, Li R, Gong S, Huang M, Sun Y, Xiong G, Wu D, Ji M, Chen Y, Gao C, Yu Y. Dual-Aptamer-Targeted Immunomagnetic Nanoparticles to Accurately Explore the Correlations between Circulating Tumor Cells and Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7646-7658. [PMID: 35104098 DOI: 10.1021/acsami.1c22720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It has been acknowledged that circulating tumor cells (CTCs) are promising biomarkers in liquid biopsy for cancer diagnosis and prognosis. However, the relationship between the CTC number and gastric cancer has scarcely been quantitatively investigated. Moreover, the single criterion of epithelial cell adhesion molecule (EpCAM) antibody/aptamer to specifically recognize epithelial CTCs cannot be universally applied for clinical applications, as it fails to recognize EpCAM-negative CTCs. Herein, we propose simple, low-cost, dual-aptamer (EpCAM and PTK7)-modified immunomagnetic Fe3O4 particles (IMNs) for efficient capture of heterogeneous CTCs and downstream analysis in gastric cancer patients. High PTK7 expression and a significant negative correlation between PTK7 and EpCAM expression were observed in primary gastric cancer tissues. Taking MGC-803 and BGC-823 cells as CTC models, the obtained dual-targeting IMNs could distinguishably recognize these cells with both high or low EpCAM and PTK7 expressions, which enhanced the accuracy of CTC recognition in gastric cancer. More than 95% of these two kinds of cells could be captured within 20 min of incubation, which was significantly more efficient than that of single EpCAM- or PTK7-modified IMNs. With this strategy, as low as five CTCs could be captured from phosphate-buffered saline (PBS), a cell mixture containing THP-1 cells, and lysed blood mediums. Moreover, the obtained CTCs can be used for subsequent gene analysis. Finally, the fabricated IMNs were successfully applied for CTC capture in 1.0 mL of peripheral blood samples from patients with gastric cancer. The detected CTC numbers in 72 participants were found to have close relationships with chemotherapy sensitivity, diagnosis, stage, and distant metastasis of patients. This work provides important references for further investigations on CTC-related diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuyuan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Meng Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuqing Sun
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guixiang Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dengpan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaojin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yan Chen
- Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China
| | - Chao Gao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
4
|
Abstract
Magnetic cell separation has become a key methodology for the isolation of target cell populations from biological suspensions, covering a wide spectrum of applications from diagnosis and therapy in biomedicine to environmental applications or fundamental research in biology. There now exists a great variety of commercially available separation instruments and reagents, which has permitted rapid dissemination of the technology. However, there is still an increasing demand for new tools and protocols which provide improved selectivity, yield and sensitivity of the separation process while reducing cost and providing a faster response. This review aims to introduce basic principles of magnetic cell separation for the neophyte, while giving an overview of recent research in the field, from the development of new cell labeling strategies to the design of integrated microfluidic cell sorters and of point-of-care platforms combining cell selection, capture, and downstream detection. Finally, we focus on clinical, industrial and environmental applications where magnetic cell separation strategies are amongst the most promising techniques to address the challenges of isolating rare cells.
Collapse
|
5
|
|
6
|
Xu P, Yu Y, Li T, Chen H, Wang Q, Wang M, Wan M, Mao C. Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Anal Chim Acta 2020; 1129:60-68. [DOI: 10.1016/j.aca.2020.06.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
|
7
|
Yin J, Deng J, Wang L, Du C, Zhang W, Jiang X. Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification. Anal Chem 2020; 92:6968-6976. [PMID: 32347710 DOI: 10.1021/acs.analchem.9b05844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe a fluorescent microspheres-based separation and analysis that enables the isolation of circulating tumor cells (CTCs) from whole blood of patients with metastatic cancer and the identification of isolated CTCs in situ without immunostaining. This approach uses antibody-functionalized fluorescent polystyrene (PS) microspheres that can selectively bind to CTCs. The binding of CTCs and fluorescent PS microspheres leads to the formation of complexes of CTCs and fluorescent PS microspheres, thereby the CTCs are size-amplified and labeled simultaneously. A pyramidal microcavity array (PMCA) is fabricated using microfabrication technology to create a precise microfilter structure with a high aspect ratio. The PMCA filter device can effectively isolate microspheres-labeled CTCs, while allow hematologic cells to deform and pass through. Using this approach, CTCs are isolated and identified in 15 of 18 patients with metastatic colorectal cancer. This approach will open new possibilities for CTCs isolation and identification and can serve a versatile platform to facilitate CTCs analysis in diverse biomedical applications.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Le Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.,Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, Guangzhou 510006, P. R. China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Ding L, Wu Y, Liu W, Liu L, Yu F, Yu S, Tian Y, Feng J, He L. Magnetic-assisted self-assembled aptamer/protein hybrid probes for efficient capture and rapid detection of cancer cells in whole blood. Talanta 2019; 205:120129. [PMID: 31450438 DOI: 10.1016/j.talanta.2019.120129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Self-assembly of building blocks for constructing multifunctional materials has opened prospects for sensing applications in the biomedical fields. In particular, the combination of aptamer with DNA assembly-based nanotechnology has greatly improved the performance of cancer cell detection. Nevertheless, the cancer cell detection strategies of integrating aptamer with protein are relatively sparse. So we have developed a self-assembled aptamer method to realize the efficient capture and rapid detection of cancer cells by ingeniously combining aptamer modified magnetic nanoparticles as capture nanoprobes with self-assembled aptamer/protein hybrid probes (SAPPs) as signal amplification probes. By merely mixing the component materials together simultaneously, the SAPPs, integrating aptamer for cancer cell recognition with protein for amplifying signal, were fabricated by DNA-governed one-step assembly. In addition, the SAPPs-based method exhibits efficient capture, rapid (about 45 min) and specific CCRF-CEM detection performance, with limits of detection down to 75 cells/mL in buffer and 200 cells/mL in whole blood.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lie Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiaodi Feng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
10
|
Yu Y, Yang Y, Ding J, Meng S, Li C, Yin X. Design of a Biocompatible and Ratiometric Fluorescent probe for the Capture, Detection, Release, and Reculture of Rare Number CTCs. Anal Chem 2018; 90:13290-13298. [DOI: 10.1021/acs.analchem.8b02625] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Yuan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Jinhua Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Si Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| |
Collapse
|