1
|
Yang C, Xu G, Hou C, Peng L, Wang W, Zhang H, Zhang X. A dual-mode nanoprobe based on silicon nanoparticles and Fe(II)-phenanthroline for the colorimetric and fluorescence determination of nitrite. Mikrochim Acta 2023; 190:318. [PMID: 37490216 DOI: 10.1007/s00604-023-05911-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
A fluorometric and colorimetric dual-modal nanoprobe (denoted as Fe2+-Phen/SiNPs) has been developed for selective and sensitive determination of nitrite (NO2-). The mechanism is based on fluorescence quenching between silicon nanoparticles (SiNPs) and Fe(II)-phenanthroline complex (Fe2+-Phen) via inner filter effect and redox. With the addition of increasing NO2-, Fe2+ is oxidized to Fe3+, recovering the fluorescence of SiNPs. Meanwhile, the color of the system gradually changes from orange-red to colorless, which enables colorimetric measurement. The NO2- concentration shows a wide linear relationship with fluorescence intensity from 0.1 to 1.0 mM (R2 = 0.9955) with a detection limit of 2.4 μM in the fluorometric method (excitation wavelength: 380 nm). By contrast, the linear range of the colorimetric method ranges from 0.01 to 0.35 mM (R2 = 0.9953) with a limit of detection of 6.8 μM (proposed selective absorbance: 510 nm). The probe has been successfully applied to nitrite determination in water, salted vegetables, and hams demonstrating broad application prospects for the determination of nitrite in complicated matrices.
Collapse
Affiliation(s)
- Chunlei Yang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
| | - Guiju Xu
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Chenghao Hou
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Lizeng Peng
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Hongwei Zhang
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
2
|
Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Phua CH, Wangchuk S, Kanatharana P, Thavarungkul P, Limbut W. New electrode material integrates silver nanoprisms with phosphorus-doped carbon nanotubes for forensic detection of nitrite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zhang Y, Zhang L, Li C, Han J, Huang W, Zhou J, Yang Y. Hydrophilic antifouling 3D porous MXene/holey graphene nanocomposites for electrochemical determination of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Anti-biofouling Ti3C2TX MXene-holey graphene modified electrode for dopamine sensing in complex biological fluids. Talanta 2022; 247:123614. [DOI: 10.1016/j.talanta.2022.123614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
|
5
|
Kongkaew S, Tubtimtong S, Thavarungkul P, Kanatharana P, Chang KH, Abdullah AFL, Limbut W. A Fabrication of Multichannel Graphite Electrode Using Low-Cost Stencil-Printing Technique. SENSORS 2022; 22:s22083034. [PMID: 35459019 PMCID: PMC9032575 DOI: 10.3390/s22083034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022]
Abstract
Multichannel graphite electrodes (MGrEs) have been designed and fabricated in this study. A template was cut from an adhesive plastic sheet using a desktop cutting device. The template was placed on a polypropylene substrate, and carbon graphite ink was applied with a squeegee to the template. The size of the auxiliary electrode (AE) as well as the location of the reference electrode (RE) of MGrEs design were investigated. Scanning electron microscopy was used to determine the thickness of the ink on the four working electrodes (WEs), which was 21.9 ± 1.8 µm. Cyclic voltammetry with a redox probe solution was used to assess the precision of the four WEs. The intra-electrode repeatability and inter-electrode reproducibility of the MGrEs production were satisfied by low RSD (<6%). Therefore, the MGrEs is reliable and capable of detecting four replicates of the target analyte in a single analysis. The electrochemical performance of four WEs was investigated and compared to one WE. The sensitivity of the MGrEs was comparable to the sensitivity of a single WE. The MGrEs’ potential applications were investigated by analyzing the nitrite in milk and tap water samples (recoveries values of 97.6 ± 0.4 to 110 ± 2%).
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Suowarot Tubtimtong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kah Haw Chang
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.H.C.); (A.F.L.A.)
| | - Ahmad Fahmi Lim Abdullah
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (K.H.C.); (A.F.L.A.)
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensors (TAB-CoE), Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.K.); (P.T.); (P.K.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288563
| |
Collapse
|
6
|
Novel three‐dimensional senor based on nanodendrites for nitrite determination. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
|
8
|
Pal A, Amreen K, Dubey SK, Goel S. Highly Sensitive and Interference-Free Electrochemical Nitrite Detection in a 3D Printed Miniaturized Device. IEEE Trans Nanobioscience 2021; 20:175-182. [PMID: 33661734 DOI: 10.1109/tnb.2021.3063730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
3D printing has a significant impact on various applications as it facilitates greater control over the designed shapes, leads to rapid prototyping and mass production with transferable designs at a lower cost. These attributes provide great versatility and thus make the devices industry-friendly. Herein, we demonstrate a simple and disposable 3D printed device, fabricated in single-step, as an electrochemical nitrite sensor using commercially available carbon loaded polylactic acid (PLA) filament. Nitrite, usually ingested through water and food, can be harmful when taken in excess. Thus, its efficient and accurate on-site detection becomes imperative. The device showed appreciable sensitivity and good selectivity towards nitrite having a limit-of-detection (LOD) of [Formula: see text]. Furthermore, the device has been shown to monitor nitrite in real soil and water samples with appreciable recovery values. Eventually, the device is capable to be multiplexed with varying soil parameters.
Collapse
|
9
|
Ahammad AS, Alam MK, Islam T, Hasan MM, Karim R, Anju AN, Mozumder MI. Poly (brilliant cresyl blue)-reduced graphene oxide modified activated GCE for nitrite detection: Analyzing the synergistic interactions through experimental and computational study. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Kong Y, Cheng Q, He Y, Ge Y, Zhou J, Song G. A dual-modal fluorometric and colorimetric nanoprobe based on graphitic carbon nitrite quantum dots and Fe (II)-bathophenanthroline complex for detection of nitrite in sausage and water. Food Chem 2019; 312:126089. [PMID: 31896452 DOI: 10.1016/j.foodchem.2019.126089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
A fluorometric and colorimetric dual-mode sensing platform based on graphitic carbon nitrite quantum dots (g-CNQDs) and Fe (II)-bathophenanthroline complex (BPS-Fe2+) was designed to the sensitive detection of nitrite (NO2-) in sausage and water. In this system, the fluorescence of g-CNQDs was quenched by BPS-Fe2+ complex due to the inner filter effect (IFE). When NO2- was present, Fe2+ was oxidized by nitrite to form BPS-Fe3+ complex with BPS, leading to the recovery of the fluorescence from g-CNQDs. Therefore, we constructed a "turn-off-on" fluorescence probe for detection of NO2-. Moreover, with the increase of NO2- concentration, the color of the solution changed from red to colorless, so the UV-vis measurements and on-site visual detection were realized. The method is capable of detecting NO2- in the concentration range of 2.32-34.8 μM with good selectivity and high sensitivity. In addition, the method has the potential to determine NO2- in water samples and sausage samples.
Collapse
Affiliation(s)
- Yuelin Kong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qiao Cheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiangang Zhou
- Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Li D, Wang T, Li Z, Xu X, Wang C, Duan Y. Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review. SENSORS 2019; 20:s20010054. [PMID: 31861855 PMCID: PMC6983230 DOI: 10.3390/s20010054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
Collapse
Affiliation(s)
- Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Correspondence:
| | - Tan Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Zhen Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Xianbao Xu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Cong Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
| | - Yanqing Duan
- Business school, University of Bedfordshire, Luton LU1 3BE, UK;
| |
Collapse
|
12
|
Siwy Z, Ensinger W, Laube B, Baldwin R. Preface. Anal Chim Acta 2019; 1086:14-15. [DOI: 10.1016/j.aca.2019.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Zhu W, Zhang Y, Gong J, Ma Y, Sun J, Li T, Wang J. Surface Engineering of Carbon Fiber Paper toward Exceptionally High-Performance and Stable Electrochemical Nitrite Sensing. ACS Sens 2019; 4:2980-2987. [PMID: 31645102 DOI: 10.1021/acssensors.9b01474] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we introduce our recent finding that the carbon fiber paper (CFP) treated by simple air annealing (OCFP) could be used for exceptionally high-performance electrochemical nitrite sensing. The air-annealing process endows the pristine CFP with higher defective edge/plane sites, more oxygen-containing functional groups, higher roughness, and improved wettability. The electrochemical studies show that the OCFP exhibits excellent sensing performance for nitrite, with an ultralow determination limit of 0.1 μM and a detection limit of 0.07 μM, an ultrawide linear determination range of 0.1-3838.5 μM, a fast current response of 1 s, and a high sensitivity of 930.4 μA mM-1 cm-2. These performance values are comparable or even superior to those for most reported noble- or transition-metal-based advanced nitrite sensors. Besides, this electrode also presents satisfactory stability, reproducibility, and feasibility of nitrite sensing in food samples. As an ideal monolithic and metal-free catalyst with ultrahigh and stable detection performance, the OCFP has a high potential to be integrated into next-generation electrochemical sensing devices.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yi Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiandong Gong
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an 710065, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, Raja P, Jeyapragasam T, Dinakaran K, Gnana kumar GP. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00602h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent developments made regarding the novel, cost-effective, and environmentally friendly nanocatalysts for the electrochemical sensing of biomolecules, pesticides, nitro compounds and heavy metal ions are discussed in this review article.
Collapse
Affiliation(s)
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Thangaraj Baskar
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang – 212013
- P.R. China
| | - Ramanjam Kannan
- Department of Chemistry
- Sri Kumaragurupara Swamigal Arts College
- Thoothukudi
- India
| | - Perumal Elumalai
- Centre for Green Energy Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Puducherry – 605 014
- India
| | - Paulsamy Raja
- Department of Chemistry
- Vivekananda College of Arts and Science
- Kanyakumari – 629 004
- India
| | | | | | - George peter Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
15
|
Jing A, Zhang C, Liang G, Feng W, Tian Z, Jing C. Hyaluronate-Functionalized Graphene for Label-Free Electrochemical Cytosensing. MICROMACHINES 2018; 9:E669. [PMID: 30567299 PMCID: PMC6315524 DOI: 10.3390/mi9120669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
Electrochemical sensors for early tumor cell detection are currently an important area of research, as this special region directly improves the efficiency of cancer treatment. Functional graphene is a promising alternative for selective recognition and capture of target cancer cells. In our work, an effective cytosensor of hyaluronate-functionalized graphene (HG) was prepared through chemical reduction of graphene oxide. The as-prepared HG nanostructures were characterized with Fourier transform infrared spectroscopy and transmission electron microscopy coupled with cyclic voltammograms and electrochemical impedance spectroscopy, respectively. The self-assembly of HG with ethylene diamine, followed by sodium hyaluronate, enabled the fabrication of a label-free electrochemical impedance spectroscopy cytosensor with high stability and biocompatibility. Finally, the proposed cytosensor exhibited satisfying electrochemical behavior and cell-capture capacity for human colorectal cancer cells HCT-116, and also displayed a wide linear range, from 5.0 × 10² cells∙mL-1 to 5.0 × 10⁶ cells∙mL-1, and a low detection limit of 100 cells∙mL-1 (S/N = 3) for quantification. This work paves the way for graphene applications in electrochemical cytosensing and other bioassays.
Collapse
Affiliation(s)
- Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chunxin Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Wenpo Feng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Zhengshan Tian
- School of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China.
| | - Chenhuan Jing
- Pingdingshan No. 1 Middle School, Pingdingshan 467000, China.
| |
Collapse
|