1
|
Immobilization of chalcone chemosensor into plasma-pretreated recycled polyester fibers toward multi-stimuli responsive textiles for detection of ammonia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to measure and monitor the concentration of specific chemical and/or gaseous species (i.e., “analytes”) is the main requirement in many fields, including industrial processes, medical applications, and workplace safety management. As a consequence, several kinds of sensors have been developed in the modern era according to some practical guidelines that regard the characteristics of the active (sensing) materials on which the sensor devices are based. These characteristics include the cost-effectiveness of the materials’ manufacturing, the sensitivity to analytes, the material stability, and the possibility of exploiting them for low-cost and portable devices. Consequently, many gas sensors employ well-defined transduction methods, the most popular being the oxidation (or reduction) of the analyte in an electrochemical reactor, optical techniques, and chemiresistive responses to gas adsorption. In recent years, many of the efforts devoted to improving these methods have been directed towards the use of certain classes of specific materials. In particular, ionic liquids have been employed as electrolytes of exceptional properties for the preparation of amperometric gas sensors, while metal–organic frameworks (MOFs) are used as highly porous and reactive materials which can be employed, in pure form or as a component of MOF-based functional composites, as active materials of chemiresistive or optical sensors. Here, we report on the most recent developments relative to the use of these classes of materials in chemical sensing. We discuss the main features of these materials and the reasons why they are considered interesting in the field of chemical sensors. Subsequently, we review some of the technological and scientific results published in the span of the last six years that we consider among the most interesting and useful ones for expanding the awareness on future trends in chemical sensing. Finally, we discuss the prospects for the use of these materials and the factors involved in their possible use for new generations of sensor devices.
Collapse
|
3
|
Didier CM, Kundu A, Rajaraman S. Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:853-863. [PMID: 34949905 PMCID: PMC8691745 DOI: 10.1109/jmems.2021.3110163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Integrated sensors in "on-a-chip" in vitro cellular models are a necessity for granularity in data collection required for advanced biosensors. As these models become more complex, the requirement for the integration of electrogenic cells is apparent. Interrogation of such cells, whether alone or within a connected cellular framework, are best achieved with microelectrodes, in the form of a microelectrode array (MEA). Makerspace microfabrication has thus far enabled novel and accessible approaches to meet these demands. Here, resin-based 3D printing, selective multimodal laser micromachining, and simple insulation strategies, define an approach to highly customizable and "on-demand" in vitro 3D MEA-based biosensor platforms. The scalability of this approach is aided by a novel makerspace microfabrication assisted technique denoted using the term Hypo-Rig. The MEA utilizes custom-defined metal microfabricated microelectrodes transitioned from planar (2D) to 3D using the Hypo-Rig. To simulate this transition process, COMSOL modeling is utilized to estimate transitionary forces and angles (with respect to normal). Practically, the Hypo-Rig demonstrated a force of ~40N, as well as a consistent 70° average angular transitionary performance which matched well with the COMSOL model. To illustrate the scalability potential, 3 × 3, 6 × 6, and 8 × 8 versions of the device were fabricated and characterized. The 3D MEAs, demonstrated impedance and phase measurements in the biologically relevant 1 kHz range of 45.4 kΩ, and -34.6° respectively, for polystyrene insulated, ~70μm sized microelectrodes.
Collapse
Affiliation(s)
- Charles M Didier
- Burnett School of Biomedical Sciences, and the Nanoscience Technology Center at the University of Central Florida, Orlando, FL 32816, USA
| | - Avra Kundu
- College of Engineering and Computer Science at the University of Central Florida, Orlando, FL 32816, USA
| | - Swaminathan Rajaraman
- Nanoscience Technology Center, the Department of Materials Science and Engineering, the College of Electrical and Computer Engineering, and the Burnett School of Biomedical Sciences at the University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Lee J, Mullen JW, Hussain G, Silvester DS. Effect of microelectrode array spacing on the growth of platinum electrodeposits and its implications for oxygen sensing in ionic liquids. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Three-dimensional platinum nanoparticle-based bridges for ammonia gas sensing. Sci Rep 2021; 11:12551. [PMID: 34131217 PMCID: PMC8206144 DOI: 10.1038/s41598-021-91975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
This study demonstrates the fabrication of self-aligning three-dimensional (3D) platinum bridges for ammonia gas sensing using gas-phase electrodeposition. This deposition scheme can guide charged nanoparticles to predetermined locations on a surface with sub-micrometer resolution. A shutter-free deposition is possible, preventing the use of additional steps for lift-off and improving material yield. This method uses a spark discharge-based platinum nanoparticle source in combination with sequentially biased surface electrodes and charged photoresist patterns on a glass substrate. In this way, the parallel growth of multiple sensing nodes, in this case 3D self-aligning nanoparticle-based bridges, is accomplished. An array containing 360 locally grown bridges made out of 5 nm platinum nanoparticles is fabricated. The high surface-to-volume ratio of the 3D bridge morphology enables fast response and room temperature operated sensing capabilities. The bridges are preconditioned for ~ 24 h in nitrogen gas before being used for performance testing, ensuring drift-free sensor performance. In this study, platinum bridges are demonstrated to detect ammonia (NH3) with concentrations between 1400 and 100 ppm. The sensing mechanism, response times, cross-sensitivity, selectivity, and sensor stability are discussed. The device showed a sensor response of ~ 4% at 100 ppm NH3 with a 70% response time of 8 min at room temperature.
Collapse
|
6
|
Grob L, Rinklin P, Zips S, Mayer D, Weidlich S, Terkan K, Weiß LJK, Adly N, Offenhäusser A, Wolfrum B. Inkjet-Printed and Electroplated 3D Electrodes for Recording Extracellular Signals in Cell Culture. SENSORS (BASEL, SWITZERLAND) 2021; 21:3981. [PMID: 34207725 PMCID: PMC8229631 DOI: 10.3390/s21123981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Recent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cells.
Collapse
Affiliation(s)
- Leroy Grob
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Philipp Rinklin
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Sabine Zips
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Sabrina Weidlich
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Korkut Terkan
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Lennart J. K. Weiß
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Nouran Adly
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (D.M.); (S.W.); (A.O.)
| | - Bernhard Wolfrum
- Neuroelectronics, Department of Electrical and Computer Engineering, MSB, MSRM, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany; (L.G.); (P.R.); (S.Z.); (K.T.); (L.J.K.W.); (N.A.)
| |
Collapse
|
7
|
Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers (Basel) 2020; 12:polym12071585. [PMID: 32708736 PMCID: PMC7408028 DOI: 10.3390/polym12071585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
The colorimetric sensor is a facile, cost-effective, and non-power-operated green energy material for gas detection. In this study, the colorimetric sensing property of a meta-aramid/dye 3 nanofiber sensor for ammonia (NH3) gas detection was investigated. This colorimetric sensor was prepared using various dye 3 concentrations via electrospinning. Morphological, thermal, structural, and mechanical analyses of the sensor were carried out by field-emission scanning electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and a universal testing machine, respectively. A homemade computer color matching machine connected with a gas flow device characterized the response of the meta-aramid/dye 3 nanofiber colorimetric sensor to various exposure levels of NH3 gas. From the results, we confirmed that this colorimetric green energy sensor could detect ammonia gas in the concentration of 1-10 ppm with a sensing response time of 10 s at room temperature. After washing with laundry detergent for 30 min, the colorimetric sensors still exhibited sensing property and reversibility.
Collapse
|
8
|
In-situ growth of 3D rosette-like copper nanoparticles on carbon cloth for enhanced sensing of ammonia based on copper electrodissolution. Anal Chim Acta 2020; 1104:60-68. [DOI: 10.1016/j.aca.2020.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 11/18/2022]
|
9
|
Formation of 3-Dimensional Gold, Copper and Palladium Microelectrode Arrays for Enhanced Electrochemical Sensing Applications. NANOMATERIALS 2019; 9:nano9081170. [PMID: 31443293 PMCID: PMC6724172 DOI: 10.3390/nano9081170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022]
Abstract
Microelectrodes offer higher current density and lower ohmic drop due to increased radial diffusion. They are beneficial for electroanalytical applications, particularly for the detection of analytes at trace concentrations. Microelectrodes can be fabricated as arrays to improve the current response, but are presently only commercially available with gold or platinum electrode surfaces, thus limiting the sensing of analytes that are more electroactive on other surfaces. In this work, gold (Au), copper (Cu), and palladium (Pd) are electrodeposited at two different potentials into the recessed holes of commercial microelectrode arrays to produce 3-dimensional (3D) spiky, dendritic or coral-like structures. The rough fractal structures that are produced afford enhanced electroactive surface area and increased radial diffusion due to the 3D nature, which drastically improves the sensitivity. 2,4,6-trinitrotoluene (TNT), carbon dioxide gas (CO2), and hydrogen gas (H2) were chosen as model analytes in room temperature ionic liquid solvents, to demonstrate improvements in the sensitivity of the modified microelectrode arrays, and, in some cases (e.g., for CO2 and H2), enhancements in the electrocatalytic ability. With the deposition of different materials, we have demonstrated enhanced sensitivity and electrocatalytic behaviour towards the chosen analytes.
Collapse
|