1
|
Du X, Xie H, Qin T, Yuan Y, Wang N. Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity. Nat Commun 2024; 15:6530. [PMID: 39095434 PMCID: PMC11297212 DOI: 10.1038/s41467-024-50895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
The release and escape of radioactive materials has posed tremendous threats to the global environment. Among various radioactive elements, 90Sr has attracted growing attention due to its long half-life and its tendency to accumulate in bone tissue. Nonetheless, the concentration of 90Sr in radioactive waste is exceedingly low, far below the detection limits of currently available strontium-targeting chemical sensors. Herein, we propose an optical nanosensor (Sr2+-nanosensor) that exhibits an ultra-low detection limit of 0.5 nM, surpassing the 90Sr in the treated radioactive water from the Fukushima. The sensor offers wide sensing range of eight orders of magnitude, rapid response of less than 10 s, and high selectivity against 31 common ions. These excellent performances are attributed to a specific ligand (Sr2+-ligand) for Sr2+ recognition. The Sr2+ is found to be bound by six oxygen atoms from the Sr2+-ligand with a stability constant at least two orders higher than that of other traditional ligands. This study offers invaluable insights for the design of Sr2+-sensing methodologies as well as a technique for detecting trace amounts of environmental radioactive pollution.
Collapse
Affiliation(s)
- Xinfeng Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Hua Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, 570228, PR China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
2
|
Banerjee S, Ghosh P, Karak A, Banik D, Mahapatra AK. A chemodosimetric chemosensor for the ratiometric detection of nerve agent-mimic DCP in solution and vapor phases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38644746 DOI: 10.1039/d4ay00451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nerve agents are among the most deadly and lethal chemical warfare agents (CWAs). Rapid identification is crucial for specialized individuals to take action against dangerous drugs. This paper describes the synthesis and characterisation of a probe (MNFZ) based on the methoxy naphthalene-furoic hydrazide group. The probe rapidly (100 s) detects and quantifies the nerve-agent simulant diethyl chlorophosphate (DCP) in both solution and vapor phases. This sensor uses a new recognition center, furoic hydrazide, where the nitrogen atom of the imine group (CN) attacks the electrophilic core phosphorus atom of DCP, followed by the hydrolysis of the imine group in the acetonitrile (ACN) solution to produce the corresponding aldehyde MNPA. The development of ICT character resulted in a distinct red-shifted ratiometric fluorescence response to DCP, with a very low limit of detection (12.2 nM). The probe is an efficient chemosensor due to its high selectivity over other organophosphorus compounds as well as its chemical stability across a wide pH range. DFT calculations, 1H NMR and HRMS were performed to finalize the sensing mechanism. Lastly, the as-designed sensor was successfully used to build a highly sensitive portable kit in test strips and a cotton biopolymer for simple and safe real-time monitoring of DCP.
Collapse
Affiliation(s)
- Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711 103, India.
| |
Collapse
|
3
|
Lu CZ, Wang CY, Song C, Qin T, Lv T, Zeng C, Chen S, Xu Z, Xun Z, Liu B, Wang YL, Zhu MQ. A ratiometric fluorescent indicator-displacement assay for on-site determination and intracellular imaging of nitroxinil. Food Chem 2024; 435:137617. [PMID: 37806206 DOI: 10.1016/j.foodchem.2023.137617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Nitroxinil (NIT) is a widely using veterinary medicine to protect cattle and sheep yet may threaten human health when ingested through food chain. Developing fluorescent analytical methods in ratiometric manners was essential for the on-site detection and in-situ monitoring of NIT but still challenging. Here, we improved the indicator-displacement assay (IDA)-based method and designed the first ratiometric fluorescent probe for NIT by using an albumin host and an Aggregation-induced emission (AIE) guest. This probe exhibited fast response (10 s), high sensitivity (limit of detection: 4.6 ppb), good selectivity (over twelve medicines) and eye-discriminable fluorescent color change (green-red) upon responding to NIT. Based on these properties, this probe enabled quantitative determination of NIT in real food samples, on-site analysis via a paper-based test strip, and fluorescence imaging of NIT in living cells.
Collapse
Affiliation(s)
- Cui-Zhen Lu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Cai-Yun Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Chao Song
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tianyi Qin
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia.
| | - Conghui Zeng
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shihong Chen
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, 1-2 Zhujiang Rd, Guangzhou 511447, China.
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China.
| | - Ming-Qiang Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
4
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
5
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
6
|
Jindal G, Kaur N. Fluorimetric Recognition of Nerve Agent Mimic Diethylchlorophosphate Along with Cu 2+/Hg 2+ Ions Using Imidazole Possessing Sensor. J Fluoresc 2023; 33:359-371. [PMID: 36418615 DOI: 10.1007/s10895-022-03069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
Abstract
An imidazole possessing sensor (1) has been designed and developed by simple one step reaction and characterization was done by using common spectroscopic methods. The fluorimetric sensing of nerve agent mimic, DCP, was carried out by observing blue shift in spectra accompanied with quenching in semi-aqueous solvent. The sensor was found proficient for the detection of DCP amongst other phosphates with detection limit of 69 nM. Furthermore, upon incorporation of various metal ions to CH3CN:H2O (4:1, v/v) solution of 1 (λex 340 nm), the fluorescent probe turned non-fluorescent only in presence of Cu2+/Hg2+ ions. This was accompanied by fluorescent color change from light blue to yellow in case of Hg2+ and colorless in case of Cu2+ ions. Moreover, practical applications of sensor 1 were investigated for recognition of Cu2+ and Hg2+ ions in real water samples along with the detection of DCP in soil samples from different areas. Differential emission changes observed with addition of Hg2+ ions and DCP led to observation of "NOR" and an "INHIBIT" molecular photonic logic operations at 446 and 385 nm, respectively.
Collapse
Affiliation(s)
- Gitanjali Jindal
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Liu B, Zhou M, Huang Y, Du B, Wang L, Xu Z, Qin T, Peng X. Rapid and ratiometric fluorescent detection of phosgene by a red-emissive ESIPT-based-benzoquinolone probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121619. [PMID: 35853258 DOI: 10.1016/j.saa.2022.121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Phosgene is a highly toxic gas that poses a serious threat to human health and public safety. Therefore, it is of great importance to develop an available detection method enabling on-the-spot measurement of phosgene. In this paper, we report a novel ESIPT fluorescent probe for phosgene detection based on quinolone fluorophore. This probe exhibits rapid response (in 10 s), stable signal output (last for 10 min), high sensitivity (LOD ∼ 6.7 nM), and distinct emission color change (red to green) towards phosgene. The sensing mechanism was investigated by using 1H NMR, HRMS and fluorescence lifetime techniques, confirming that the amidation reaction between phosgene and quinolone effectively suppressed the ESIPT process of probe. Eventually, this probe was fabricated into polymer nanofibers by electrospinning and successfully employed to monitor gaseous phosgene with high specificity. This work provided a promising analytical tool for rapid and ratiometric detection of phosgene both in solution and in the gas phase.
Collapse
Affiliation(s)
- Bin Liu
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Mei Zhou
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Yingying Huang
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Bing Du
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Lei Wang
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Tianyi Qin
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
8
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Wang X, Wang X, Feng R, Fu T, Zhang J, Sun X. Recent advances of chemosensors for nerve agents. Chem Asian J 2022; 17:e202200284. [DOI: 10.1002/asia.202200284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Xuechuan Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Rong Feng
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Tao Fu
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Jie Zhang
- Fourth Military Medical University: Air Force Medical University Institute of Preventive medicine CHINA
| | - Xiaolong Sun
- Xi'an Jiaotong University School of life science and technology 28, Xianning West Road, Xi'an, Shaanxi 710049 XiAn CHINA
| |
Collapse
|
11
|
Yuan H, Jiang A, Fang H, Chen Y, Guo Z. Optical properties of natural small molecules and their applications in imaging and nanomedicine. Adv Drug Deliv Rev 2021; 179:113917. [PMID: 34384827 DOI: 10.1016/j.addr.2021.113917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Natural small molecules derived from plants have fascinated scientists for centuries due to their practical applications in various fields, especially in nanomedicine. Some of the natural molecules were found to show intrinsic optical features such as fluorescence emission and photosensitization, which could be beneficial to provide spatial temporal information and help tracking the drugs in biological systems. Much efforts have been devoted to the investigation of optical properties and practical applications of natural molecules. In this review, optical properties of natural small molecules and their applications in fluorescence imaging, and theranostics will be summarized. First, we will introduce natural small molecules with different fluorescence emission, ranging from blue to near infrared emission. Second, imaging applications in biological samples will be covered. Third, we will discuss the applications of theranostic nanomedicines or drug delivering systems containing fluorescent natural molecules acting as imaging agents or photosensitizers. Finally, future perspectives in this field will be discussed.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Ao Jiang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
12
|
Gori M, Thakur A, Sharma A, Flora SJS. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides. Top Curr Chem (Cham) 2021; 379:33. [PMID: 34346011 DOI: 10.1007/s41061-021-00345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Organophosphorus (OP) compounds are typically a broad class of compounds that possess various uses such as insecticides, pesticides, etc. One of the most evil utilizations of these compounds is as chemical warfare agents, which pose a greater threat than biological weapons because of their ease of access. OP compounds are highly toxic compounds that cause irreversible inhibition of enzyme acetylcholinesterase, which is essential for hydrolysis of neurotransmitter acetylcholine, leading to series of neurological disorders and even death. Due to the extensive use of these organophosphorus compounds in agriculture, there is an increase in the environmental burden of these toxic chemicals, with severe environmental consequences. Hence, the rapid and sensitive, selective, real-time detection of OP compounds is very much required in terms of environmental protection, health, and survival. Several techniques have been developed over a few decades to easily detect them, but still, numerous challenges and problems remain to be solved. Major advancement has been observed in the development of sensors using the spectroscopic technique over recent years because of the advantages offered over other techniques, which we focus on in the presented review.
Collapse
Affiliation(s)
- Muskan Gori
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
13
|
Kumar V. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation. Chem Commun (Camb) 2021; 57:3430-3444. [PMID: 33725077 DOI: 10.1039/d1cc00132a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The existence of chemical weapons (blister and nerve agents) is an unfortunate reality of the modern world. The usage of these chemical agents by rogue states or terrorist groups has showcased their ugly faces in the past and even in recent years. Despite extensive and strenuous efforts by the Organization for the Prohibition of Chemical Weapons (OPCW) to eliminate chemical warfare agents (CWAs) by the prohibition of their production and the destruction of their stockpiles, many countries still possess them in enormous quantities. Given the potential threat from these lethal agents, it is imperative to have a foolproof chemical sensor and detection system, which should consist of readily deployable chemical probes that can operate with high specificity and sensitivity. Over the last decade, our group has been engaged in designing and developing novel field-deployable sensing techniques by exploring approaches based on supramolecular tools, which can result in excellent specificity, sensitivity, high speed, portability and low cost. In this article, I describe our group's journey and success stories in the development of chemical warfare detection protocols, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents under real environmental conditions. It is interesting to note that the combination of three molecular probes (SQ, Fc and LH2) could simply achieve the detection of all CWAs at room temperature in one go without the need for nonportable and expensive instruments. The ease and generality of these techniques/methods suggest great promise for the highly specific chemical sensing of almost the entire class of CWAs. In this paper, a brief introduction is first provided to present the basic chemistry related to CWAs and the importance of supramolecular chemistry in the design of new protocols with new insights. The manipulation of molecular probes is then debated towards the development of a system for the chromo-fluorogenic sensing of CWAs without interference from most relevant analytes. Finally, the outlook of open challenges and the future developments of this rapidly evolving field is discussed.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
14
|
Development of a quantum dot nanobead-based fluorescent strip immunosensor for on-site detection of aflatoxin B 1 in lotus seeds. Food Chem 2021; 356:129614. [PMID: 33798795 DOI: 10.1016/j.foodchem.2021.129614] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Owing to the serious threat of aflatoxin B1 (AFB1) to public health, development of a reliable method for accurate determination of it is extremely necessary and urgent. In this study, a simple, rapid and highly-sensitive quantum dot nanobeads (QBs) based lateral flow fluorescent strip immunosensor was developed for on-site detection of AFB1 in edible and medicinal lotus seeds. Carboxylated QBs were used as the fluorescent markers to prepare the fluorescent probe through coupling QBs with anti-AFB1 antibodies. Bovine serum albumin (BSA)-AFB1 antigens and goat anti-mouse IgG antibodies were coated on the nitrocellulose (NC) membrane to prepare the test (T) and control (C) lines, respectively. Qualitative analysis of AFB1 was realized by naked eye, and the quantitative determination was achieved with a portable strip reader. Results showed that the newly-developed test strip sensor could achieve rapid detection of AFB1 within 15 min, allowing a limit of detection (LOD) of 1 ng/mL (2 μg/kg) and a linear range of 1-19 ng/mL (2-38 μg/kg). Recovery rates from the fortified lotus seeds with low, medium and high spiking concentrations (2.5, 5 and 10 μg/kg) ranged from 94.0% to 116.0% with relative standard deviations less than 10%. All the results were confirmed by a standard LC-MS/MS method. The QBs-based fluorescent strip immunosensor with high sensitivity, easy operation, and low cost provided a preferred solution for rapid, on-site screening and highly-sensitive quantitation of AFB1 in a large number of lotus seed samples.
Collapse
|
15
|
Chen K, Chen W, Sun J, Bai M, Gao Z, Hou X. A novel ratiometric fluorescent probe for quantitative detection of isocyanates in air. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Li Y, Zhou Y, Chen X, Huang X, Xiong Y. Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Anal Chim Acta 2019; 1094:90-98. [PMID: 31761051 DOI: 10.1016/j.aca.2019.09.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023]
Abstract
Immunochromatographic assays (ICAs) are mainstream point-of-care diagnostic tools in disease control, food safety, and environmental monitoring. However, the important issue pertaining to the influence of sample addition methods on the detection performance of ICAs has not been addressed, and related information is still lacking. Herein, we selected the well-accepted gold nanoparticles (AuNPs) as visual labels. AuNP-based ICA was then used to explore the effects of three sample addition methods (i.e., dry, wet, and insert) on the analytical performance of ICAs by using competitive and sandwich models. Under optimized conditions, the competitive ICA with clenbuterol as an analyte showed a negligible difference (p > 0.05) in the detection performance of the three methods in ideal phosphate buffered saline solution. However, the wet method demonstrated the worst performance in pork samples (p < 0.05). The sandwich ICA strip with human chorionic gonadotropin as an analyte revealed the significantly different analytical performances of the three approaches in phosphate buffer (PB) solution and spiked serum (p < 0.05). Two independent linear correlations were observed with the increase in target concentration. However, for the wet method in the PB solution and serum, the first linear correlation was at a relatively narrow target concentration range, and the second linear correlation was at a wider concentration range compared with those for the dry and insert methods. Our findings demonstrated that sample addition methods slightly influence competitive ICAs (p > 0.05) but remarkably affect sandwich ICAs (p < 0.05). We believe that this study can further explain the differences in detection results for the same target analyte in actual ICA detection. The results may serve as a reference in the rational selection of the appropriate sample addition method for succeeding ICA works.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|