1
|
Zhang Y, Zhang Z, Wu M, Zhang R. Advances and Perspectives of Responsive Probes for Measuring γ-Glutamyl Transpeptidase. ACS MEASUREMENT SCIENCE AU 2024; 4:54-75. [PMID: 38404494 PMCID: PMC10885334 DOI: 10.1021/acsmeasuresciau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Gamma-glutamyltransferase (GGT) is a plasma-membrane-bound enzyme that is involved in the γ-glutamyl cycle, like metabolism of glutathione (GSH). This enzyme plays an important role in protecting cells from oxidative stress, thus being tested as a key biomarker for several medical conditions, such as liver injury, carcinogenesis, and tumor progression. For measuring GGT activity, a number of bioanalytical methods have emerged, such as chromatography, colorimetric, electrochemical, and luminescence analyses. Among these approaches, probes that can specifically respond to GGT are contributing significantly to measuring its activity in vitro and in vivo. This review thus aims to highlight the recent advances in the development of responsive probes for GGT measurement and their practical applications. Responsive probes for fluorescence analysis, including "off-on", near-infrared (NIR), two-photon, and ratiometric fluorescence response probes, are initially summarized, followed by discussing the advances in the development of other probes, such as bioluminescence, chemiluminescence, photoacoustic, Raman, magnetic resonance imaging (MRI), and positron emission tomography (PET). The practical applications of the responsive probes in cancer diagnosis and treatment monitoring and GGT inhibitor screening are then highlighted. Based on this information, the advantages, challenges, and prospects of responsive probe technology for GGT measurement are analyzed.
Collapse
Affiliation(s)
- Yiming Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zexi Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Miaomiao Wu
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Run Zhang
- Australian Institute for
Bioengineering and Nanotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Wang K, Chen XY, Liu WD, Yue Y, Wen XL, Yang YS, Zhang AG, Zhu HL. Imaging Investigation of Hepatocellular Carcinoma Progress via Monitoring γ-Glutamyltranspeptidase Level with a Near-Infrared Fluorescence/Photoacoustic Bimodal Probe. Anal Chem 2023; 95:14235-14243. [PMID: 37652889 DOI: 10.1021/acs.analchem.3c02270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the main principal causes of cancer death, and the late definite diagnosis limits therapeutic approaches in time. The early diagnosis of HCC is essential, and the previous investigations on the biomarkers inferred that the γ-glutamyltranspeptidase (GGT) level could indicate the HCC process. Herein, a near-infrared fluorescence/photoacoustic (NIRF/PA) bimodal probe, CySO3-GGT, was developed for monitoring the GGT level and thus to image the HCC process. After the in-solution tests, the bimodal response was convinced. The various HCC processes were imaged by CySO3-GGT at the cellular level. Then, the CCl4-induced HCC (both induction and treatment) and the subcutaneous and orthotopic xenograft mice models were selected. All throughout the tests, CySO3-GGT achieved NIRF and PA bimodal imaging of the HCC process. In particular, CySO3-GGT could effectively realize 3D imaging of the HCC nodule by visualizing the boundary between the tumor and the normal tissue. The information here might offer significant guidance for the dynamic monitoring of HCC in the near future.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen-Dong Liu
- Jiangxi Nabo Wine Industry Co. Ltd., Hexi Industrial Park, Ji'an, Wan'an County343802, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ai-Guo Zhang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Ni J, Huang M, Ji W, Wang L, Sun T. Recent advances in Surface-enhanced Raman Scattering for Liver Cancer Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
5
|
Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Anal Chim Acta 2021; 1178:338829. [PMID: 34482874 DOI: 10.1016/j.aca.2021.338829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Rapid, convenient, sensitive and simultaneous detection of distinct enzymes is urgently needed for diagnosis, therapeutics and prognostic of related diseases. Here, a new strategy for simultaneous monitoring γ-glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) activity has been fabricated based on dual-emission carbon dots (CDs). CDs were prepared by solvothermal treatment of Actinidia chinensis, which presents two fluorescent emissions at 471 nm (blue channel) and 671 nm (red channel). GGT and ALP activity can be detected based on inner filter effect (IFE) and static quenching effect (SQE) of blue and red channels of CDs, respectively. Linear ranges were 2.5-90 U L-1 and 5-200 U L-1, and limit of detection (LOD) were 0.71 U L-1 and 1.2 U L-1 for GGT and ALP, respectively. Developed CDs can monitor GGT and ALP activity in human serum samples with satisfied recoveries (99.3%-108.6% for GGT, 98.4%-105.4% for ALP). Furthermore, the combination of CDs to sense GGT and ALP activity with OR logic gate can predict human health status. The design and application of dual-emission CDs can also be extended as promising tools to detect multianalytes using different channel signals.
Collapse
|
6
|
Chen J, Dai S, Liu L, Maitz MF, Liao Y, Cui J, Zhao A, Yang P, Huang N, Wang Y. Photo-functionalized TiO 2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioact Mater 2021; 6:45-54. [PMID: 32817912 PMCID: PMC7417617 DOI: 10.1016/j.bioactmat.2020.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Titanium dioxide (TiO2) has a long history of application in blood contact materials, but it often suffers from insufficient anticoagulant properties. Recently, we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties. However, for long-term vascular implant devices such as vascular stents, besides anticoagulation, also anti-inflammatory, anti-hyperplastic properties, and the ability to support endothelial repair, are desired. To meet these requirements, here, we immobilized silver nanoparticles (AgNPs) on the surface of TiO2 nanotubes (TiO2-NTs) to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties. The photo-functionalized TiO2-NTs showed protein-fouling resistance, causing the anticoagulant property and the ability to suppress cell adhesion. The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property. The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property, a strong inhibitory effect on smooth muscle cells (SMCs), and low toxicity to endothelial cells (ECs). The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs, and therefore has enormous potential in the field of cardiovascular implant devices. Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.
Collapse
Affiliation(s)
- Jiang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Manfred F. Maitz
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Jiawei Cui
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
| |
Collapse
|
7
|
Tong X, Li T, Long R, Guo Y, Wu L, Shi S. Determination of the activity of γ-glutamyl transpeptidase and of its inhibitors by using the inner filter effect on the fluorescence of nitrogen-doped carbon dots. Mikrochim Acta 2020; 187:182. [PMID: 32086563 DOI: 10.1007/s00604-020-4160-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/13/2020] [Indexed: 01/29/2023]
Abstract
A fluorescence (FL) probe for determination of γ-glutamyl transpeptidase (GGT) activity and evaluation of inhibitors was developed based on the inner filter effect (IFE) of nitrogen-doped carbon dots (N-CDs). Bright green emissive N-CDs were synthesized by one-step hydrothermal technique with catechol and ethylenediamine. The excitation and emission wavelengths for N-CDs were 408 and 510 nm, respectively. γ-L-Glutamyl-4-nitroanilide (γ-G4NA) was employed as the substrate of GGT. The absorption spectrum of GGT catalytic product (4-nitroaniline, 4-NA) overlapped greatly with the excitation spectrum of N-CDs. 4-NA acted as the absorber in IFE to quench the FL of N-CDs. Thus, the FL quenching of N-CDs was closely related to GGT activity. The established FL method offered good linear relationship within 2.0-10.0 U L-1 (R2, 0.982) and 10.0-110.0 U L-1 (R2, 0.998) with a low detection limit of 0.6 U L-1. The method was successfully applied to investigate GGT activity in human serum samples with acceptable recoveries (99.1-105.0%). The approach was also employed for screening GGT inhibitors from different polar extracts of Schisandra chinensis. Results indicated that this strategy presents superior characteristics for GGT sensing. This method has great potential as a candidate for diagnosis of GGT-related diseases and high-throughput drug discovery. Graphical abstract.
Collapse
Affiliation(s)
- Xia Tong
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Te Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ruiqing Long
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China.
| | - Lihui Wu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shuyun Shi
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenetics, Central South University, 410078, Changsha, People's Republic of China.
| |
Collapse
|