1
|
Alam A, Fatima B, Shafi S, Sarwar Z, Hussain D, Jawad SEZ, Majeed S, Imran M, Najam-Ul-Haq M. Facile synthesis of Ag@Fe 3O 4/ZnO nanomaterial for label-free electrochemical detection of methemoglobin in anemic patients. Sci Rep 2023; 13:8711. [PMID: 37248281 DOI: 10.1038/s41598-023-35737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Methemoglobinemia (MetHb, Fe3+) is a chronic disease arising from the unequal distribution of oxyhemoglobin (HbFe2+, OHb) in the blood circulatory system. The oxidation of standard oxyhemoglobin forms methemoglobin, causing cyanosis (skin bluish staining). Methemoglobin cannot bind the pulmonary gaseous ligands such as oxygen (O2) and carbon monoxide (CO). As an oxidizing agent, the biochemical approach (MetHb, Fe3+) is modified in vitro by sodium nitrite (NaNO2). The silver-doped iron zinc oxide (Ag@Fe3O4/ZnO) is hydrothermally synthesized and characterized by analytical and spectroscopic techniques for the electrochemical sensing of methemoglobin via cyclic voltammetry (CV). Detection parameters such as concentration, pH, scan rate, electrochemical active surface area (ECSA), and electrochemical impedance spectroscopy (EIS) are optimized. The linear limit of detection for Ag@Fe3O4/ZnO is 0.17 µM. The stability is determined by 100 cycles of CV and chronoamperometry for 40 h. The serum samples of anemia patients with different hemoglobin levels (Hb) are analyzed using Ag@Fe3O4/ZnO modified biosensor. The sensor's stability, selectivity, and response suggest its use in methemoglobinemia monitoring.
Collapse
Affiliation(s)
- Ayub Alam
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sameera Shafi
- Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Zohaib Sarwar
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shan E Zahra Jawad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Imran
- Department of Biochemistry, University of Peshawar, Peshawar, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
2
|
Song H, Huo M, Zhou M, Chang H, Li J, Zhang Q, Fang Y, Wang H, Zhang D. Carbon Nanomaterials-Based Electrochemical Sensors for Heavy Metal Detection. Crit Rev Anal Chem 2022; 54:1987-2006. [PMID: 36463557 DOI: 10.1080/10408347.2022.2151832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are commonly found in a wide range of environmental settings metals, but the potential toxicity associated with heavy metal exposure represents a major threat to global public health. It is thus vital that approaches to efficiently, reliably, and effectively detecting heavy metals in a range of sample types be established. Carbon nanomaterials offer many advantageous properties that make them well-suited to the design of sensitive, selective, easy-to-operate electrochemical biosensors ideal for detecting heavy metal ions. The present review offers an overview of recent progress in the development of carbon nanomaterial-based electrochemical sensors used to detect heavy metals. In addition to providing a detailed discussion of certain carbon nanomaterials such as carbon nanotubes, graphene, carbon fibers, carbon quantum dots, carbon nanospheres, mesoporous carbon, and Graphdiyne, we survey the challenges and future directions for this field. Overall, the studies discussed herein suggest that the further development of carbon nanomaterial-modified electrochemical sensors will support the integration of increasingly advanced sensor platforms to aid in detecting heavy metals in foods, environmental samples, and other settings, thereby benefitting human health and society as a whole.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
3
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Simple and sensitive nitric oxide biosensor based on the electrocatalysis of horseradish peroxidase on AuNPs@metal-organic framework composite-modified electrode. Mikrochim Acta 2022; 189:162. [PMID: 35348908 PMCID: PMC8961095 DOI: 10.1007/s00604-022-05268-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/08/2022] [Indexed: 11/14/2022]
Abstract
Fe-based metal–organic framework (MIL-101(Fe)) was synthesized through a simple solvothermal synthesis and then used to prepare the AuNPs-decorated MIL-101(Fe) nanocomposite (APPPM(Fe)) by a multi-step layer-by-layer assembly process. Benefited from the porous structure of MIL-101(Fe) and the multilayer assemble process, the loading amount of AuNPs on APPPM(Fe) was enhanced and exhibited a fine biocompatible interface and high conductivity. Through the intense Au–S bond, high loading amount of horseradish peroxidase was immobilized on APPPM(Fe) and the native bioactivity of HRP was kept to realize its direct electrochemistry. From the electrochemical kinetics, the constructed biosensor displayed fast electron transfer and good electrocatalysis activity for the detection of nitric oxide (NO) with wide linear range from 0.033 to 5370 μM and a low detection limit of 0.01 μM (3 σ) as well as fine stability, reproducibility and specificity. According to results of real sample analysis, the proposed electrochemical biosensor offers fast and simple detection of NO in real serum. Therefore, the present strategy definitely provided a potential application prospect in NO clinic detection and disease therapy.
Collapse
|
5
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
6
|
Zheng T, Wang W, Ashley J, Zhang M, Feng X, Shen J, Sun Y. Self-Assembly Protein Superstructures as a Powerful Chemodynamic Therapy Nanoagent for Glioblastoma Treatment. NANO-MICRO LETTERS 2020; 12:151. [PMID: 34138164 PMCID: PMC7770858 DOI: 10.1007/s40820-020-00490-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/18/2020] [Indexed: 06/12/2023]
Abstract
Glioblastoma (GBM) remains a formidable challenge in oncology. Chemodynamic therapy (CDT) that triggers tumor cell death by reactive oxygen species (ROS) could open up a new door for GBM treatment. Herein, we report a novel CDT nanoagent. Hemoglobin (Hb) and glucose oxidase (GOx) were employed as powerful CDT catalysts. Instead of encapsulating the proteins in drug delivery nanocarriers, we formulate multimeric superstructures as self-delivery entities by crosslinking techniques. Red blood cell (RBC) membranes are camouflaged on the protein superstructures to promote the delivery across blood-brain barrier. The as-prepared RBC@Hb@GOx nanoparticles (NPs) offer superior biocompatibility, simplified structure, and high accumulation at the tumor site. We successfully demonstrated that the NPs could efficiently produce toxic ROS to kill U87MG cancer cells in vitro and inhibit the growth of GBM tumor in vivo, suggesting that the new CDT nanoagent holds great promise for treating GBM.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Wentao Wang
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jon Ashley
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Xiaotong Feng
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|