1
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
2
|
Li Y, Huang Y, Sun X, Zhong K, Tang L. An AIE mechanism-based fluorescent probe for relay recognition of HSO 3-/H 2O 2 and its application in food detection and bioimaging. Talanta 2023; 258:124412. [PMID: 36907164 DOI: 10.1016/j.talanta.2023.124412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
In view of the important physiological role of HSO3- and H2O2, it is of great significance to develop fluorescent probes to detect HSO3- and H2O2 in aqueous medium. We herein report a new fluorescent probe (E)-3-(2-(4-(1,2,2-triphenylvinyl)styryl)benzo [d]thiazol-3-ium-3-yl)propane-1-sulfonate (TPE-y) possessing benzothiazolium salt based on tetraphenylethene (TPE) moiety with aggregation-induced emission (AIE) characteristics. TPE-y can sequentially recognize HSO3- and H2O2 through colorimetric and fluorescence dual-channel response in HEPES (pH = 7.4, 1% DMSO) buffer solution, and exhibits high sensitivity and selectivity, a large Stokes shift (189 nm), as well as a wide applicable pH range. The detection limits of TPE-y and TPE-y-HSO3 for HSO3- and H2O2 are 3.52 μM and 0.15 μM, respectively. The recognition mechanism is verified by 1H NMR and HRMS methods. Furthermore, TPE-y can detect HSO3- in sugar samples, and can image exogenous HSO3- and H2O2 in living MCF-7 cells. TPE-y can relay detect HSO3- and H2O2, which is of great significance to maintain the redox balance in organisms.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanru Huang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiaofei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
3
|
Sengottuvelu D, Shaik AK, Mishra S, Ahmad H, Abbaszadeh M, Hammer NI, Kundu S. Multicolor Nitrogen-Doped Carbon Quantum Dots for Environment-Dependent Emission Tuning. ACS OMEGA 2022; 7:27742-27754. [PMID: 35967036 PMCID: PMC9366982 DOI: 10.1021/acsomega.2c03912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon quantum dots (CQDs) have potential applications in many fields such as light-emitting devices, photocatalysis, and bioimaging due to their unique photoluminescence (PL) properties and environmental benignness. Here, we report the synthesis of nitrogen-doped carbon quantum dots (NCQDs) from citric acid and m-phenylenediamine using a one-pot hydrothermal approach. The environment-dependent emission changes of NCQDs were extensively investigated in various solvents, in the solid state, and in physically assembled PMMA-PnBA-PMMA copolymer gels in 2-ethyl-hexanol. NCQDs display bright emissions in various solvents as well as in the solid state. These NCQDs exhibit multicolor PL emission across the visible region upon changing the environment (solutions and polymer matrices). NCQDs also exhibit excitation-dependent PL and solvatochromism, which have not been frequently investigated in CQDs. Most CQDs are nonemissive in the aggregated or solid state due to the aggregation-caused quenching (ACQ) effect, limiting their solid-state applications. However, NCQDs synthesized here display a strong solid-state emission centered at 568 nm attributed to the presence of surface functional groups that restrict the π-π interaction between the NCQDs and assist in overcoming the ACQ effect in the solid state. NCQD-containing gels display significant fluorescence enhancement in comparison to the NCQDs in 2-ethyl hexanol, likely because of the interaction between the polar PMMA blocks and NCQDs. The application of NCQDs-Gel as a solid/gel state fluorescent display has been presented. This research facilitates the development of large-scale, low-cost multicolor phosphor for the fabrication of optoelectronic devices, sensing, and bioimaging applications.
Collapse
Affiliation(s)
- Dineshkumar Sengottuvelu
- Dave
C. Swalm School of Chemical Engineering, 323 Presidents Circle, Mississippi State University, MS State, Mississippi 39762, United States
| | - Abdul Kalam Shaik
- Department
of Chemistry and Biochemistry, University
of Mississippi, Oxford, Mississippi 38677, United States
| | - Satish Mishra
- Dave
C. Swalm School of Chemical Engineering, 323 Presidents Circle, Mississippi State University, MS State, Mississippi 39762, United States
| | - Humayun Ahmad
- Dave
C. Swalm School of Chemical Engineering, 323 Presidents Circle, Mississippi State University, MS State, Mississippi 39762, United States
| | - Mahsa Abbaszadeh
- Dave
C. Swalm School of Chemical Engineering, 323 Presidents Circle, Mississippi State University, MS State, Mississippi 39762, United States
| | - Nathan I. Hammer
- Department
of Chemistry and Biochemistry, University
of Mississippi, Oxford, Mississippi 38677, United States
| | - Santanu Kundu
- Dave
C. Swalm School of Chemical Engineering, 323 Presidents Circle, Mississippi State University, MS State, Mississippi 39762, United States
| |
Collapse
|
4
|
Luo J, Li S, Pang C, Wang M, Ma X, Zhang C. Highly selective fluorescence probe for imidacloprid measurement based on fluorescence resonance energy transfer. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
6
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
7
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Sohal N, Maity B, Basu S. Recent advances in heteroatom-doped graphene quantum dots for sensing applications. RSC Adv 2021; 11:25586-25615. [PMID: 35478909 PMCID: PMC9037181 DOI: 10.1039/d1ra04248c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Graphene quantum dots (GQDs) are carbon-based fluorescent nanomaterials having various applications due to attractive properties. But the low photoluminescence (PL) yield and monochromatic PL behavior of GQDs put limitations on their real-time applications. Therefore, heteroatom doping of GQDs is recognized as the best approach to modify the optical as well as electronic properties of GQDs by modifying their chemical composition and electronic structure. In this review, the new strategies for preparing the heteroatom (N, B, S, P) doped GQDs by using different precursors and methods are discussed in detail. The particle size, emission wavelength, PL emissive color, and quantum yield of recently developed heteroatom doped GQDs are reported in this article. The investigation of structure, crystalline nature, and composition of heteroatom doped GQDs by various characterization techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) are also described. The recent progress on the impact of mono or co-doping of heteroatoms on PL behavior, and optical, electrochemiluminescence (ECL), and electrochemical properties of GQDs is also surveyed. Further, heteroatom doped GQDs with attractive properties used in sensing of various metal ions, biomolecules, small organic molecules, etc. by using various techniques with different limits of detection are also summarized. This review provides progressive trends in the development of heteroatom doped GQDs and their various applications.
Collapse
Affiliation(s)
- Neeraj Sohal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 India
| |
Collapse
|
9
|
Ganganboina AB, Dega NK, Tran HL, Darmonto W, Doong RA. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens Bioelectron 2021; 181:113151. [PMID: 33740543 DOI: 10.1016/j.bios.2021.113151] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Glioma is the predominant brain tumor with high death rate. The successful development of biosensor to achieve an efficient detection of glioma cells at low concentration remains a great challenge for the personalized glioma therapy. Herein, an ultrasensitive pulse induced electrochemically impedimetric biosensor for glioma cells detection has been successfully fabricated. The 4-11 nm sulfur-doped graphene quantum dots (S-GQDs) are homogeneously deposited onto gold nanoparticles decorated carbon nanospheres (Au-CNS) by Au-thiol linkage to form S-GQDs@Au-CNS nanocomposite which acts as dual functional probe for enhancing the electrochemical activity as well as conjugating the angiopep-2 (Ang-2) for glioma cell detection. Moreover, the application of an externally electrical pulse at +0.6 V expend the surface of glioma cells to accelerate the attachment of glioma cells onto the Ang-2-conjugated S-GQDs@Au-CNS nanocomposite, resulting in the enhanced sensitivity toward glioma cell detection. An ultrasensitive impedimetric detection of glioma cells with a wide linear range of 100-100,000 cells mL-1 and a limit of detection of 40 cells mL-1 is observed. Moreover, the superior selectivity with long-term stability of the developed biosensor in human serum matrix corroborates the feasibility of using S-GQDs@Au-CNS based nanomaterials as the promising sensing probe for practical application to facilitate the ultrasensitive and highly selective detection of cancer cells.
Collapse
Affiliation(s)
| | - Naresh Kumar Dega
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hai Linh Tran
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Win Darmonto
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu, 30013, Taiwan; Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
| |
Collapse
|
10
|
Hu L, Zheng T, Song Y, Fan J, Li H, Zhang R, Sun Y. Ultrasensitive and selective fluorescent sensor for cysteine and application to drug analysis and bioimaging. Anal Biochem 2021; 620:114138. [PMID: 33639112 DOI: 10.1016/j.ab.2021.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 01/26/2023]
Abstract
A fluorescent sensor based on coumarin-maleimide conjugate was developed for efficient discrimination of Cys from Hcy and GSH in both organic and aqueous solution. Addition of Cys to the non-fluorescent sensor solution in DMF induced bright blue fluorescence and enhanced the fluorescence intensity by 320-fold while other amino acids and biothiols (Gly, Hcy, GSH, Glu, Val, Tyr, Arg, Trp, Lys, His, Leu, Phe, Asp and Met) did not bring about remarked change. The sensor responds to Cys extremely rapidly. If Cys was added to the sensor solution, the fluorescence intensity increased by 170-fold immediately and attained the maximum value in 5 min. A linear relationship was observed between Cys concentration within 2-20 μM and the fluorescence intensity of the sensor solution. The detection limit of the sensor toward Cys is as low as 4.7 nM. The sensor is also effective for specific detection of Cys in aqueous (DMF/H2O = 9:1, v/v) solution. Practical application of the sensor to drug analysis and bioimaging of living Hela cells has been verified. Possible sensing mechanism of the sensor toward Cys has been proposed.
Collapse
Affiliation(s)
- Luping Hu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Ji Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China.
| | - Ruiqing Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
11
|
Guo FN, Wang YT, Wu N, Feng LX, Zhang HC, Yang T, Wang JH. Carbon nitride nanoparticles as ultrasensitive fluorescent probes for the detection of α-glucosidase activity and inhibitor screening. Analyst 2021; 146:1016-1022. [PMID: 33295353 DOI: 10.1039/d0an02079f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, α-glucosidase inhibitors (AGIs) have played a significant role in the treatment of type II diabetes (T2D), so it is necessary to develop a reliable and sensitive method to find new AGIs. Herein, we establish a novel method based on fluorescent carbon nitride nanoparticles (CNNPs) for the sensitive detection of the activity of α-glucosidase (α-glu) and the screening of its inhibitors. A CNNP-based fluorescent probe is synthesized from green raw materials, urea and lysine, by a one-pot method. In the presence of α-glu, the substrate 4-nitrophenyl-α-d-glucopyranoside (pNPG) is hydrolyzed to generate 4-nitrophenol (pNP), leading to the fluorescence (FL) quenching of CNNPs due to the inner filter effect (IFE). On the other hand, the activity of α-glu is inhibited after the addition of AGIs, which turns on the FL of CNNPs. In this way, the detection of α-glu activity and the screening of AGIs are achieved. The linear range is 1.25-10.00 U L-1 with a limit of detection as low as 0.17 U L-1 and the IC50 values of two typical inhibitors (gallic acid and acarbose) are 813 μM and 465 μM, respectively. The CNNP probe is further applied for the determination of α-glu activity in human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Feng-Na Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | | | |
Collapse
|