1
|
Li X, Lu X, Zhang L, Cai Z, Tang D, Lai W. A papain-based colorimetric catalytic sensing system for immunoassay detection of carcinoembryonic antigen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124269. [PMID: 38608561 DOI: 10.1016/j.saa.2024.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.
Collapse
Affiliation(s)
- Xiaoqin Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Xiaoxue Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Linyu Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China.
| |
Collapse
|
2
|
Mao Y, Lin L, Chen Y, Yang M, Zhang L, Dai X, He Q, Jiang Y, Chen H, Liao J, Zhang Y, Wang Y. Preparation of site-specific Z-scheme g-C 3N 4/PAN/PANI@LaFeO 3 cable nanofiber membranes by coaxial electrospinning: Enhancing filtration and photocatalysis performance. CHEMOSPHERE 2023; 328:138553. [PMID: 37004820 DOI: 10.1016/j.chemosphere.2023.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The coaxial electrospinning method for preparation of g-C3N4/polyacrylonitrile (PAN)/polyaniline (PANI)@LaFeO3 cable fiber membrane (PC@PL) was designed for adsorption-filtration-photodegradation of pollutants. A series of characterization results show that LaFeO3 and g-C3N4 nanoparticles (NPs) are respectively loaded in the inner and outer layers of PAN/PANI composite fibers to construct the site-specific Z-type heterojunction system with spatially separated morphologies. The PANI in cable not only possesses abundant exposed amino/imino functional groups for adsorption of contaminant molecules but also due to the excellent electrical conductivity works as a redox medium for collecting and consuming the electrons and holes from LaFeO3 and g-C3N4, which can efficiently promote photo-generated charge carriers separation and improve the catalytic performance. Further investigations demonstrate that as a photo-Fenton catalyst LaFeO3 in PC@PL catalyzes/activates the H2O2 generated in situ by LaFeO3/g-C3N4, further enhancing the decontamination efficiency of the PC@PL. The porous, hydrophilic, antifouling, flexible and reusable properties of the PC@PL membrane significantly enhance the mass transfer efficiency of reactants by filtration effect and increase the amount of dissolved oxygen, thus producing massive •OH for degradation of pollutants, which maintains the water flux (1184 L m-2. h-1 (LMH)) and the rejection rate (98.5%). Profiting from its unique synergistic effect of adsorption, photo-Fenton and filtration, PC@PL exhibits wonderful self-cleaning performance and distinguished removal rate for methylene blue (97.0%), methyl violet (94.3%), ciprofloxacin (87.6%) and acetamiprid (88.9%) within 75 min, disinfection (100% Escherichia coli (E. coli) and 80% Staphylococcus aureus (S.aureus) inactivation)) and excellent cycle stability.
Collapse
Affiliation(s)
- Yihang Mao
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Lin
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuexing Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mingrui Yang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Qing He
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
3
|
Ng SS, Lee HL, Pandian BR, Doong RA. Recent developments on nanomaterial-based optical biosensor as potential Point-of-Care Testing (PoCT) probe in carcinoembryonic antigen detection: A review. Chem Asian J 2022; 17:e202200287. [PMID: 35471591 DOI: 10.1002/asia.202200287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
For the past decades, several cancer biomarkers have been exploited for rapid and accurate prognosis or diagnosis purposes. In this review, the optical biosensor is targeted for carcinoembryonic antigen (CEA) detection. The CEA level is a prominent parameter currently used in clinical cases for the prognosis of cancer-related diseases. Many nanomaterial-based biosensors are invented as alternatives for the commonly used enzyme-linked immunosorbent assays (ELISA) immunoassay method in CEA detection as the traditional approach but they possess certain drawbacks such as tedious procedure, high technical demand, and costly. Nevertheless, the effort appears to be wasted as none of them are being actualised. Generally, the sensor function was carried out by converting bio-signals generated upon the interface of the receptor into light signals. These sensors were popular due to specific advantages such as sensitivity, being free from chemical and electromagnetic interferences, wide dynamic range, and being easy to be monitored. The features of PoC diagnostics are discussed and associated with the various applications of colorimetric-based and chemiluminescent-based biosensors. The roles of nanomaterials in each application were also summarised by comparing the modification, incubation period, lowest detection limit (LOD) and linear range of detection amount. The challenges and future perspectives were highlighted at the end of the review.
Collapse
Affiliation(s)
- Siew Suan Ng
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| | - Hooi Ling Lee
- Universiti Sains Malaysia, School of Chemical Sciences, School of Chemical Sciences,, Universiti Sains Malaysia,, 11800, USM, MALAYSIA
| | | | - Ruey-An Doong
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| |
Collapse
|
4
|
Huo GN, Ma LL, Liu XT, Zhou KH, Suo ZC, Zhang FF, Zhu BL, Zhang SM, Huang WP. Fabrication and photoelectrochemical sensitivity of N, F-TiO2NTs/Ti with 3D structure. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
6
|
Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal Chim Acta 2021; 1158:338387. [PMID: 33863418 DOI: 10.1016/j.aca.2021.338387] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 01/27/2023]
Abstract
For the diabetes diagnosis, noninvasive methods are preferred to invasive methods; urine glucose measurement is an example of a noninvasive method. However, conventional noninvasive methods for urine glucose measurement are not intuitive. Furthermore, such methods exhibit low selectivity because they can detect interfering molecules in addition to glucose. Herein, we fabricate a noninvasive, intuitive, and highly selective paper sensor consisting of polyaniline nanoparticles (PAni-NPs) and red blood cell membranes (RBCMs). The PAni-NPs (adsorbed on the paper) are highly sensitive to hydrogen ions and change color from emeraldine blue to emeraldine green within a few seconds. The RBCM (coated on the PAni-NP-adsorbed paper) having the glucose transporter-1 protein plays the role of a smart filter that transports glucose but rejects other interfering molecules. In particular, the selectivity of the RBCM-coated PAni-NP-based paper sensor was approximately improved ∼85%, compared to the uncoated paper sensors. The paper sensor could detect urine glucose over the range of 0-10 mg/mL (0-56 mM), with a limit of detection of 0.54 mM. The proposed paper sensor will facilitate the development of a highly selective and colorimetric urine glucose monitoring system.
Collapse
|
7
|
Zhang B, Hu X, Jia Y, Li J, Zhao Z. Polyaniline@Au organic-inorganic nanohybrids with thermometer readout for photothermal immunoassay of tumor marker. Mikrochim Acta 2021; 188:63. [PMID: 33537897 DOI: 10.1007/s00604-021-04719-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
A photothermal immunoassay using a thermometer as readout based on polyaniline@Au organic-inorganic nanohybrids was built. Temperature output is acquired due to the photothermal effect of the photothermal nanomaterial. Polyaniline@Au organic-inorganic nanohybrids were synthesized by interfacial reactions with high photothermal conversion efficiency. A sandwich structure of the immunocomplex was prepared on a microplate for determination of carcinoembryonic antigen (CEA) by polyaniline@Au organic-inorganic nanohybrids as nanolabel. The released heat based on light-to-heat conversion from the photothermal nanolabel under NIR irradiation is detectable using the thermometer. The increased temperature is directly proportional to CEA concentration. The linear range of the photothermal immunoassay is 0.20 to 25 ng mL-1 with determination limit of 0.17 ng mL-1. Polyaniline@Au organic-inorganic nanohybrids with high photothermal conversion efficiency was synthesized as labels to construct photothermal immunosensor. The sandwich-type immunoassay was built on 96 hole plate based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected quantitatively by thermometer readout.
Collapse
Affiliation(s)
- Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xing Hu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yejing Jia
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihuan Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
8
|
Lin J, Li K, Wang M, Chen X, Liu J, Tang H. Reagentless and sensitive determination of carcinoembryonic antigen based on a stable Prussian blue modified electrode. RSC Adv 2020; 10:38316-38322. [PMID: 35517528 PMCID: PMC9057263 DOI: 10.1039/d0ra06751b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
Reagentless and sensitive detection of tumor biomarkers using label-free electrochemical immunosensors is highly desirable for early and effective cancer diagnosis. Herein, we present a label-free electrochemical immunoassay platform based on surface-confined Prussian blue (PB) redox probes for sensitive and reagentless determination of carcinoembryonic antigen (CEA). To facilitate the electron transfer of probes and improve sensitivity, Au nanoparticles and PB (Au-PB) are electrochemically co-deposited on a carbon nanotube (CNT) modified glassy carbon electrode (GCE). A polydopamine (pDA) layer is coated on the Au-PB nanocomposite layer in situ as a bifunctional linker. In addition to improving the stability of PB, pDA also provides reducibility for the preparation of gold nanoparticles, which offers an interface for anti-CEA antibody immobilization. The fabricated immunosensor has good stability and is able to reagentlessly detect CEA over a wide range (0.005-50 ng mL-1) with high reproducibility. Furthermore, the immunosensor was used for determination of CEA in human serum samples.
Collapse
Affiliation(s)
- Jing Lin
- Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Kunyin Li
- Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Meifang Wang
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Xiaohong Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine Nanning 530023 China
| | - Jiyang Liu
- Department of Chemistry, Zhejiang Sci-Tech University 928 Second Avenue, Xiasha Higher Education Zone Hangzhou 310018 PR China
| | - Hongliang Tang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine Nanning 530023 China
| |
Collapse
|
9
|
Chi L, Xu C, Li S, Wang X, Tang D, Xue F. In situ amplified QCM immunoassay for carcinoembryonic antigen with colorectal cancer using horseradish peroxidase nanospheres and enzymatic biocatalytic precipitation. Analyst 2020; 145:6111-6118. [PMID: 32840507 DOI: 10.1039/d0an01399d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An innovative quartz crystal microbalance immunoassay was designed for detection of carcinoembryonic antigen using horseradish peroxidasenanoparticle as the enhancer, accompanying enzymatic biocatalytic precipitation toward 4-chloro-1-naphthol.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery
- Shengli Clinical Medical College of Fujian Medical University
- Fujian Provincial Hospital
- Fuzhou 350001
- P.R. China
| | - Chao Xu
- Department of Gastrointestinal Surgery
- Shengli Clinical Medical College of Fujian Medical University
- Fujian Provincial Hospital
- Fuzhou 350001
- P.R. China
| | - Shuyuan Li
- Shengli Clinical Medical College of Fujian Medical University
- Fuzhou 350004
- P.R. China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery
- Shengli Clinical Medical College of Fujian Medical University
- Fujian Provincial Hospital
- Fuzhou 350001
- P.R. China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108
- P. R. China
| | - Fangqin Xue
- Department of Gastrointestinal Surgery
- Shengli Clinical Medical College of Fujian Medical University
- Fujian Provincial Hospital
- Fuzhou 350001
- P.R. China
| |
Collapse
|