1
|
Jiang D, Qi R, Wu S, Li Y, Liu J. Zirconium-rich magnetic polyoxometalate-based metal-organic framework: Tailored for phosphopeptide analysis from lung cancer A549 cells. J Colloid Interface Sci 2024; 663:123-131. [PMID: 38394817 DOI: 10.1016/j.jcis.2024.02.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Polyoxometalate-based metal-organic frameworks (POMOFs) have become a promising affinity material for separation and enrichment. The analysis of protein phosphorylation represents a challenge for the development of efficient enrichment materials. Here, a novel zirconium-rich magnetic POMOF was successfully designed and prepared for the enrichment of phosphopeptides. The binding affinity of the nanomaterial partly came from Fe-O clusters in the MOF. The Lewis acid-base interactions between V-O clusters and zirconium ions in V10O28-Zr4+ and phosphate groups in phosphopeptides further strengthened the enrichment ability. The zirconium-rich magnetic POMOF was employed to capture phosphopeptides from non-fat milk, human saliva, and serum. Additionally, 748 unique phosphopeptide peaks were detected from the tryptic digests of lung cancer A549 cell proteins with a high specificity (86.9 %). POMOFs will become an active competitor for the design of protein affinity materials and will provide a new approach for phosphopeptide analysis.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, PR China
| |
Collapse
|
2
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
3
|
Guo M, Zhang Y, Wu L, Sheng Y, Zhao J, Wang Z, Wang H, Zhang L, Xiao H. Dynamic Phosphoproteomics of BRS3 Activation Reveals the Hippo Signaling Pathway for Cell Migration. J Proteome Res 2023. [PMID: 37368948 DOI: 10.1021/acs.jproteome.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Sheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Zhao
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
António M, Lima T, Vitorino R, Daniel-da-Silva AL. Interaction of Colloidal Gold Nanoparticles with Urine and Saliva Biofluids: An Exploratory Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4434. [PMID: 36558287 PMCID: PMC9785464 DOI: 10.3390/nano12244434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The use of gold nanoparticles for drug delivery, photothermal or photodynamic therapy, and biosensing enhances the demand for knowledge about the protein corona formed on the surface of nanoparticles. In this study, gold nanospheres (AuNSs), gold nanorods (AuNRs), and gold nanoflowers (AuNFs) were incubated with saliva or urine. After the interaction, the surface of gold nanoparticles was investigated using UV-VIS spectroscopy, zeta potential, and dynamic light scattering. The shifting of the localized surface plasmon resonance (LSPR) band, the increase in hydrodynamic diameter, and the changes in the surface charge of nanoparticles indicated the presence of biomolecules on the surface of AuNSs, AuNRs, and AuNFs. The incubation of AuNFs with saliva led to nanoparticle aggregation and minimal protein adsorption. AuNSs and AuNRs incubated in saliva were analyzed through liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the 96 proteins adsorbed on the surface of the gold nanoparticles. Among the 20 most abundant proteins identified, 14 proteins were common in both AuNSs and AuNRs. We hypothesize that the adsorption of these proteins was due to their high sulfur content, allowing for their interaction with gold nanoparticles via the Au-S bond. The presence of distinct proteins on the surface of AuNSs or AuNRs was also investigated and possibly related to the competition between proteins present on the external layers of corona and gold nanoparticle morphology.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Phycology, Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Sohail A, Jiang X, Wahid A, Wang H, Cao C, Xiao H. Free-flow zone electrophoresis facilitated proteomics analysis of heterogeneous subpopulations in H1299 lung cancer cells. Anal Chim Acta 2022; 1227:340306. [DOI: 10.1016/j.aca.2022.340306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/01/2022]
|
8
|
Ouyang M, Wu J, Yan Y, Ding CF. Efficient Enrichment of Global Phosphopeptides Using Magnetic Tannic Acid – Titanium(IV)/Zirconium(IV) Functionalized Spheres as a Novel Sorbent for Immobilized Metal Ion Affinity Chromatography (IMAC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Menglin Ouyang
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Jiani Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Yinghua Yan
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T, Long F. Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics 2022; 19:311-324. [PMID: 36730079 DOI: 10.1080/14789450.2023.2176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) was the third leading cause of global death in 2019, causing a huge economic burden to society. Therefore, it is urgent to identify specific phenotypes of COPD patients through early detection, and to promptly treat exacerbations. The field of phosphoproteomics has been a massive advancement, compelled by the developments in mass spectrometry, enrichment strategies, algorithms, and tools. Modern mass spectrometry-based phosphoproteomics allows understanding of disease pathobiology, biomarker discovery, and predicting new therapeutic modalities. AREAS COVERED In this article, we present an overview of phosphoproteomic research and strategies for enrichment and fractionation of phosphopeptides, identification of phosphorylation sites, chromatographic separation and mass spectrometry detection strategies, and the potential application of phosphorylated proteomic analysis in the diagnosis, treatment, and prognosis of COPD disease. EXPERT OPINION The role of phosphoproteomics in COPD is critical for understanding disease pathobiology, identifying potential biomarkers, and predicting new therapeutic approaches. However, the complexity of COPD requires the more comprehensive understanding that can be achieved through integrated multi-omics studies. Phosphoproteomics, as a part of these multi-omics approaches, can provide valuable insights into the underlying mechanisms of COPD.
Collapse
Affiliation(s)
- Xiaoyin Zeng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liu S, Wang H, Jiang X, Ji Y, Wang Z, Zhang Y, Wang P, Xiao H. Integrated N-glycoproteomics Analysis of Human Saliva for Lung Cancer. J Proteome Res 2022; 21:1589-1602. [PMID: 35715216 DOI: 10.1021/acs.jproteome.1c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant protein N-glycosylation is a cancer hallmark, which has great potential for cancer detection. However, large-scale and in-depth analysis of N-glycosylation remains challenging because of its high heterogeneity, complexity, and low abundance. Human saliva is an attractive diagnostic body fluid, while few efforts explored its N-glycoproteome for lung cancer. Here, we utilized a zwitterionic-hydrophilic interaction chromatography-based strategy to specifically enrich salivary glycopeptides. Through quantitative proteomics analysis, 1492 and 1234 intact N-glycopeptides were confidently identified from pooled saliva samples of 10 subjects in the nonsmall-cell lung cancer group and 10 subjects in the normal control group. Accordingly, 575 and 404 N-glycosites were revealed for the lung cancer group and normal control group. In particular, 154 N-glycosites and 259 site-specific glycoforms were significantly dysregulated in the lung cancer group. Several N-glycosites located at the same glycoprotein and glycans attached to the same N-glycosites were observed with differential expressions, including haptoglobin, Mucin-5B, lactotransferrin, and α-1-acid glycoprotein 1. These N-glycoproteins were mainly related to inflammatory responses, infectious diseases, and cancers. Our study achieved comprehensive characterization of salivary N-glycoproteome, and dysregulated site-specific glycoforms hold promise for noninvasive detection of lung cancer.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Du Z, Yang Q, Liu Y, Chen S, Zhao H, Bai H, Shao W, Zhang Y, Qin W. A New Strategy for High-Efficient Tandem Enrichment and Simultaneous Profiling of N-Glycopeptides and Phosphopeptides in Lung Cancer Tissue. Front Mol Biosci 2022; 9:923363. [PMID: 35685241 PMCID: PMC9171396 DOI: 10.3389/fmolb.2022.923363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
N-glycosylation and phosphorylation, two common posttranslational modifications, play important roles in various biological processes and are extensively studied for biomarker and drug target screening. Because of their low abundance, enrichment of N-glycopeptides and phosphopeptides prior to LC–MS/MS analysis is essential. However, simultaneous characterization of these two types of posttranslational modifications in complex biological samples is still challenging, especially for tiny amount of samples obtained in tissue biopsy. Here, we introduced a new strategy for the highly efficient tandem enrichment of N-glycopeptides and phosphopeptides using HILIC and TiO2 microparticles. The N-glycopeptides and phosphosites obtained by tandem enrichment were 21%–377% and 22%–263% higher than those obtained by enriching the two PTM peptides separately, respectively, using 160–20 μg tryptic digested peptides as the starting material. Under the optimized conditions, 2798 N-glycopeptides from 434 N-glycoproteins and 5130 phosphosites from 1986 phosphoproteins were confidently identified from three technical replicates of HeLa cells by mass spectrometry analysis. Application of this tandem enrichment strategy in a lung cancer study led to simultaneous characterization of the two PTM peptides and discovery of hundreds of differentially expressed N-glycosylated and phosphorylated proteins between cancer and normal tissues, demonstrating the high sensitivity of this strategy for investigation of dysregulated PTMs using very limited clinical samples.
Collapse
Affiliation(s)
- Zhuokun Du
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Qianying Yang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Sijie Chen
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Hongxian Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
| | - Haihong Bai
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Wei Shao
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yangjun Zhang
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
- *Correspondence: Yangjun Zhang, ; Weijie Qin,
| | - Weijie Qin
- School of Basic Medical Science, Anhui Medical University, Hefei, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, China
- *Correspondence: Yangjun Zhang, ; Weijie Qin,
| |
Collapse
|
12
|
Nechvátalová M, Urban J. Current trends in the development of polymer-based monolithic stationary phases. ANALYTICAL SCIENCE ADVANCES 2022; 3:154-164. [PMID: 38715639 PMCID: PMC10989626 DOI: 10.1002/ansa.202100065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2024]
Abstract
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
Collapse
Affiliation(s)
| | - Jiří Urban
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
13
|
Titanium(IV) immobilized affinity chromatography facilitated phosphoproteomics analysis of salivary extracellular vesicles for lung cancer. Anal Bioanal Chem 2022; 414:3697-3708. [DOI: 10.1007/s00216-022-04013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
|
14
|
[Affinity chromatography based phosphoproteome research on lung cancer cells and its application]. Se Pu 2021; 39:77-86. [PMID: 34227361 PMCID: PMC9274851 DOI: 10.3724/sp.j.1123.2020.07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
磷酸化是蛋白质翻译后修饰的重要形式之一,其异常往往会导致细胞内信号通路的紊乱和疾病的发生。固定化金属离子亲和色谱(IMAC)是磷酸化肽段的高效富集技术,在磷酸化蛋白质组研究方面应用广泛。该研究以金属钛离子(Ti4+)螯合IMAC材料(Ti4+-IMAC)为载体,进行磷酸化肽段富集。比较了10 μm Ti4+-IMAC通过振荡法和固相萃取法(SPE)富集磷酸肽的效果,发现振荡法可以富集到更多的磷酸肽;对比了两种尺寸(10 μm和30 μm)Ti4+-IMAC在磷酸化肽段富集中的差异,发现小尺寸材料富集效果更佳。进一步采用优化的策略比较了不同转移能力肺癌细胞的磷酸化蛋白质组,免标记定量蛋白质组学结果表明,优化的Ti4+-IMAC方法可以从正常的肺成纤维细胞MRC5、低转移肺癌细胞95C和高转移肺癌细胞95D中分别鉴定到510、863和1108种磷酸化蛋白质,其中317种为3组所共有。该研究共鉴定到1268种磷酸化蛋白质上的7560个磷酸化位点,其中1130个为差异磷酸化位点,文献报道显示部分异常表达的激酶与癌症转移密切相关。通过生信对比分析发现,异常表达的磷酸化蛋白质主要与细胞侵袭、迁移和死亡等细胞迁移方面的功能有关。通过优化磷酸化肽富集策略,初步阐明了磷酸化蛋白质网络的异常与肺癌转移之间的相关性,该方法有望用于肺癌进展相关的磷酸化位点、磷酸化蛋白质及其信号通路研究。
Collapse
|
15
|
Poly amidoamine functionalized poly (styrene-divinylbenzene-glycidylmethacrylate) composites for the rapid enrichment and determination of N-phosphoryl peptides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Huang H, Zheng Q, He Y, Zhong C, Tian W, Zhang S, Lin J, Lin Z. Facile synthesis of bifunctional polymer monolithic column for tunable and specific capture of glycoproteins and phosphoproteins. J Chromatogr A 2021; 1651:462329. [PMID: 34157477 DOI: 10.1016/j.chroma.2021.462329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Efficiently tunable capture of the glycosylated/phosphorylated proteins is critical to meet the need of in-depth glycoproteome and phosphoproteome studies. Reported here is a new bifunctional polymer monolithic column by introducing benzeneboronic acid and phosphonic acid onto monolithic column (denoted as poly (EDMA-co-VPBA-co-VPA) monolith) for tunable and specific enrichment of glycoproteins and phosphoproteins via switching different mobile phases. Based on boronate affinity and immobilized metal affinity, the as-prepared poly (EDMA-co-VPBA-co-VPA) monolith exhibited superior performance in selective separation of small molecules and biomacromolecules containing cis-diol/phosphate groups or not. And the frontal chromatography analysis showed that the binding capacity of the poly (EDMA-co-VPBA-co-VPA) monolith towards horseradish peroxidase (HRP, glycoprotein) or β-casein (phosphoprotein) is four-fold higher than that of bovine serum albumin (BSA, non-glycosylated/phosphorylated protein). Furthermore, combined with mass spectrometry identification, the successful application in specific enrichment of glycopeptides/phosphopeptides from tryptic digests of HRP/β-casein and direct capture of low abundant endogenous phosphopeptides from human serum proved great practicability in complex samples. This study provides a novel insight for fabricating the monolithic columns with multifunctionalization to facilitate further post-translational modification (PTM)-proteomics development.
Collapse
Affiliation(s)
- Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
17
|
Features of the Metabolic Profile of Saliva in Lung Cancer and COPD: The Effect of Smoking Status. Metabolites 2021; 11:metabo11050289. [PMID: 33946448 PMCID: PMC8147157 DOI: 10.3390/metabo11050289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 01/26/2023] Open
Abstract
The aim of the study was to compare the metabolic characteristics of the salivary composition in lung cancer, chronic obstructive pulmonary disease (COPD) and their combination, depending on the smoking history. The study group included 392 patients with lung cancer of various histological types. The division into subgroups was carried out in accordance with the severity of COPD and smoking experience. Salivary biochemical composition was determined according to 34 indicators. For data processing, the principal component method was used. Different groups of biochemical saliva markers are informative when separately accounting for the smoking factor and the presence of COPD in lung cancer. For smoking, antioxidant enzymes and electrolyte components of saliva are informative; for COPD metabolic enzymes, lipid peroxidation products, sialic acids and electrolyte components are informative. While taking into account the smoking factor and the presence of COPD, biochemical markers corresponding to the presence/absence and severity of COPD are the priority. Changes occurring in the background of smoking are of a secondary nature, manifesting as much as possible with a smoking history of more than 50 pack-years. Thus, the metabolic changes that occur in lung cancer in combination with COPD, depending on the smoking factor, can be estimated using saliva.
Collapse
|
18
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Bel’skaya LV, Sarf EA, Solomatin DV, Kosenok VK. Salivary Metabolic Profile of Patients with Lung Cancer, Chronic Obstructive Pulmonary Disease of Varying Severity and Their Comorbidity: A Preliminary Study. Diagnostics (Basel) 2020; 10:diagnostics10121095. [PMID: 33333922 PMCID: PMC7765349 DOI: 10.3390/diagnostics10121095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the work was to study the features of the salivary biochemical composition in the combined pathology of lung cancer and chronic obstructive pulmonary disease (COPD) of varying severity (COPD I, COPD II). The study group included patients with lung cancer (n = 392), non-malignant lung pathologies (n = 168) and healthy volunteers (n = 500). Before treatment, the salivary biochemical composition was determined according to 34 indicators. Survival analysis performed by the Kaplan-Meier method. Biochemical parameters (catalase, imidazole compounds ICs, sialic acids, lactate dehydrogenase (LDH)) that can be used to monitor patients at risk (COPD I) for timely diagnosis of lung cancer are determined. A complex of salivary biochemical indicators with prognostic value in lung cancer was revealed. For patients with lung cancer without COPD, a group of patients with a favorable prognosis can be distinguished with a combination of ICs < 0.478 mmol/L and LDH >1248 U/L (HR = 1.56, 95% CI 0.40–6.07, p = 0.03891). For COPD I, a level of ICs < 0.182 mmol/L are prognostically favorable (HR = 1.74, 95% CI 0.71–4.21, p = 0.07270). For COPD II, combinations of pH < 6.74 and LDH >1006 U/L are prognostically favorable. In general, for patients with lung cancer in combination with COPD I, the prognosis is more favorable than without COPD.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
- Correspondence:
| | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 14, Tukhachevsky str, 644043 Omsk, Russia;
| | - Victor K. Kosenok
- Department of Oncology, Omsk State Medical University, 12, Lenina str, 644099 Omsk, Russia;
| |
Collapse
|