1
|
Castro RC, Páscoa RNMJ, Saraiva MLMFS, Santos JLM, Ribeiro DSM. Chemometrically driven multiplexed metal ion detection using a triple emitting quantum dots-based nanoprobe. Anal Bioanal Chem 2025; 417:417-433. [PMID: 39592505 PMCID: PMC11698780 DOI: 10.1007/s00216-024-05661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Metal ion pollution poses a global concern due to its significant risks to both human health and environmental well-being. The toxicity of these ions can increase when they coexist, interacting with each other and with other harmful substances, even at low concentrations. Therefore, an accurate, rapid, and cost-effective methodology is urgently needed for the simultaneous quantification of multiple metal ions. This study presents a new approach for the multiplexed detection of various metal ions (Ag+, Cu2+, Hg2+, Al3+, Pb2+, Fe3+, Fe2+, Zn2+, Ni2+, Cd2+, and Ca2+) using a triple-emission nanoprobe comprising carbon dots and distinctly capped CdTe quantum dots, specifically green-emitting glutathione -quantum dots and red-emitting 3-mercaptopropionic acid-quantum dots. The method achieved high accuracy by analysing first- and second-order photoluminescence data with distinct advanced chemometric tools. R2P values for partial least squares and unfolded partial least square models exceeding 0.9 for several metal ions at low concentrations (mmol L-1) were obtained. Additionally, PL second-order data yielded significantly better results than PL first-order data, attributed to the distinct behaviour of the metal ions over time. Interestingly, it was also noted for the first time the significant contribution of the molar ratio between the metal ions on the models' accuracy. This novel method provides a highly accurate and efficient way to detect multiple metal ions simultaneously, paving the way for improved environmental monitoring and pollution assessment. The utilization of the proposed method contributes to a better understanding of the complex interactions in mixed metal ion systems, allowing for earlier detection and mitigation of metal ion contamination threats.
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal.
| | - David S M Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Castro RC, Páscoa RNMJ, Saraiva MLMFS, Santos JLM, Ribeiro DSM. Kinetic Determination of Acetylsalicylic Acid Using a CdTe/AgInS 2 Photoluminescence Probe and Different Chemometric Models. BIOSENSORS 2023; 13:bios13040437. [PMID: 37185512 PMCID: PMC10135845 DOI: 10.3390/bios13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The combination of multiple quantum dots (QDs) in a multi-emitter nanoprobe can be envisaged as a promising sensing scheme, as it enables obtaining a collective response of individual emitters towards a given analyte and allows for achieving specific analyte-response profiles. The processing of these profiles using adequate chemometric methods empowers a more sensitive, reliable and selective determination of the target analyte. In this work, we developed a kinetic fluorometric method consisting of a dual CdTe/AgInS2 quantum dots photoluminescence probe for the determination of acetylsalicylic acid (ASA). The fluorometric response was acquired as second-order time-based excitation/emission matrices that were subsequently processed using chemometric methods seeking to assure the second-order advantage. The data obtained in this work are considered second-order data as they have a three-dimensional size, I × J × K (where I represents the samples' number, J the fluorescence emission wavelength while K represents the time). In order to select the most adequate chemometric method regarding the obtained data structure, different chemometric models were tested, namely unfolded partial least squares (U-PLS), N-way partial least squares (N-PLS), multilayer feed-forward neural networks (MLF-NNs) and radial basis function neural networks (RBF-NNs).
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| | - David S M Ribeiro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Castro RC, N.M.J. Páscoa R, Lúcia M.F.S. Saraiva M, Lapa RA, Fernandes JO, Cunha SC, Santos JL, Ribeiro DS. Fluorometric kinetic determination of Aflatoxin B1 by combining Cd-free ternary quantum dots induced photocatalysis and chemometrics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
5
|
Castro RC, Páscoa RNMJ, Saraiva MLMFS, Santos JLM, Ribeiro DSM. Photoluminescent and visual determination of ibandronic acid using a carbon dots/AgInS 2 quantum dots ratiometric sensing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120592. [PMID: 34789406 DOI: 10.1016/j.saa.2021.120592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
A sensing platform combining carbon dots (CDs, with blue emission) and thiomalic acid (TMA)-capped AgInS2 quantum dots (QDs, with orange emission) was developed aiming the photoluminescence (PL) ratiometric determination of ibandronic acid (IBAN), a bisphosphonate pharmaceutical. The ternary AgInS2 QDs were used for IBAN probing, undergoing a concentration-related PL quenching in its presence, whilst the PL of CDs remained practically unaffected due to its chemical inertness towards the antiresorptive drug, provided an intrinsic self-reference fluorophore. In addition, a visual sensing approach was also proposed, employing for the first time ternary QDs. This relied on RGB images acquired by means of a digital camera and seek the development of a rapid IBAN screening test. The developed sensing platforms were employed for IBAN determination in samples with pharmaceutical interest providing good results, in accordance to the reported IBAN levels, and obtaining recovery values between 98 and 103%.
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Ricardo N M J Páscoa
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - David S M Ribeiro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Zhan X, Wang B, Yu L. Glycidol‐modified polyethylenimine‐capped carbon dots with ultrastable fluorescence for sensitive and selective detection of folic acid in food samples. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao‐Ye Zhan
- Department of Chemistry, School of Science Tianjin University Tianjin China
| | - Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University Tianjin China
| | - Li‐Ping Yu
- Department of Chemistry, School of Science Tianjin University Tianjin China
| |
Collapse
|
7
|
Olmo F, Rodriguez A, Colina A, Heras A. UV/Vis absorption spectroelectrochemistry of folic acid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractUV/Vis absorption spectroelectrochemistry is a very promising analytical technique due to the complementary information that is simultaneously obtained from electrochemistry and spectroscopy. In this work, this technique is used in a parallel configuration to study the oxidation of folic acid in alkaline medium. Herein, UV/Vis absorption spectroelectrochemistry has been used to detect both the oxidation products and the folic acid consumed at the electrode/solution interface, allowing us to develop an analytical protocol to quantify vitamin B9 in pharmaceutical tablets. Linear ranges of three orders of magnitude have been achieved in basic medium (pH = 12.9), obtaining high repeatability and low detection limits. The spectroelectrochemical determination of folic acid in pharmaceutical tablets at alkaline pH values is particularly interesting because of the changes that occur in the optical signal during the electrochemical oxidation of FA, providing results with very good figures of merit and demonstrating the utility and versatility of this hyphenated technique, UV/Vis absorption spectroelectrochemistry.
Collapse
|
8
|
Chemometric-assisted kinetic determination of oxytetracycline using AgInS 2 quantum dots as PL sensing platforms. Anal Chim Acta 2021; 1188:339174. [PMID: 34794564 DOI: 10.1016/j.aca.2021.339174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022]
Abstract
In this work a kinetic fluorometric methodology relying on the time-based monitoring of the photoluminescence quenching of AgInS2 ternary quantum dots induced by oxytetracycline, was developed. The kinetic approach allowed not only to reduce the LOD and improve sensitivity and selectivity but also to collect second-order data that was explored for the quantification of the target analyte in the presence of uncalibrated interfering species. Upon processing the acquired second-order kinetic PL data by unfolded partial least-squares (U-PLS), oxytetracycline was quantified in commercially available pharmaceutical formulations. The obtained results, namely an R2P higher than 0.99 and RE lower than 8%, proved the suitability and accuracy of the developed approach.
Collapse
|
9
|
Castro RC, Saraiva MLM, Santos JL, Ribeiro DS. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
N-doped MoS 2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chim Acta 2021; 1180:338740. [PMID: 34538313 DOI: 10.1016/j.aca.2021.338740] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022]
Abstract
Total Antioxidant Capacity (TAC) Assay plays an important role in evaluating the quality of antioxidant food and monitoring the oxidative stress level of human body. It is mainly achieved by measuring the contents of antioxidants such as AA, L-Cys and GSH, while TAC can be detected by using peroxidase-like activity of artificial nanoenzyme materials. In this work, the N-Doped, defect-rich N-MoS2NFs nano-materials were used to build the nano enzyme, which has strong stability and high peroxidase-like activity. H2O2 was detected because it can be catalyzed to generate the intermediate ·OH and make TMB appears blue. However, when H2O2, AA, L-Cys and GSH coexist in solution, due to the oxidation resistance of AA, L-Cys and GSH, they can competitively react with ·OH in solution or reduce TMB in oxidation state (oxTMB), which reduces the characteristic absorption of oxTMB, indirectly achieves the purpose of detecting AA, L-Cys and GSH, and finally realizes the determination of TAC, even in actual serum and saliva samples. At the same time, the N-MoS2 NFs/NH2-MIL-53(Al)+OPD system is further constructed. Based on the fluorescence resonance energy transfer (FRET) between NH2-MIL-53(Al) and oxidized OPD (oxOPD), the purpose of detecting TAC by fluorescence method was realized.
Collapse
|
11
|
Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules 2021; 26:molecules26092764. [PMID: 34066652 PMCID: PMC8125818 DOI: 10.3390/molecules26092764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ternary quantum dots (QDs) are novel nanomaterials that can be used in chemical analysis due their unique physicochemical and spectroscopic properties. These properties are size-dependent and can be adjusted in the synthetic protocol modifying the reaction medium, time, source of heat, and the ligand used for stabilization. In the last decade, several spectroscopic methods have been developed for the analysis of organic and inorganic analytes in biological, drug, environmental, and food samples, in which different sensing schemes have been applied using ternary quantum dots. This review addresses the different synthetic approaches of ternary quantum dots, the sensing mechanisms involved in the analyte detection, and the predominant areas in which these nanomaterials are used.
Collapse
|
12
|
|
13
|
Castro RC, Lopes AFR, Soares JX, Ribeiro DSM, Santos JLM. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS 2 quantum dots and Au nanoparticles. Analyst 2020; 146:1004-1015. [PMID: 33295361 DOI: 10.1039/d0an01874k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present work focused on the development of a fluorescence resonance energy transfer (FRET)-based sensing platform for the monitoring of atenolol in pharmaceutical formulations. The implemented approach involved the assembly of d-penicillamine-capped AgInS2/ZnS quantum dots (QDs), as energy donors, and gold nanoparticles (AuNPs) as acceptors and the establishment of electrostatic interaction between both capping ligands at the nanoparticle surface, which induced the inhibition of the ternary QD photoluminescence (PL). The presence of a ZnS shell around the ternary QD core and the use of cysteamine (CA) as the AuNP capping ligand, instead of the typical citrate, allowed a more efficient FRET process to occur. The ability of Cd-free ternary QDs to be used as a sensing element in FRET-based assays was demonstrated, emphasizing the advantages relative to the common Cd-based QDs, when seeking the implementation of more environmentally friendly and less toxic analytical methodologies. The influence of several β-blocker drugs on the FRET donor-acceptor assemblies was thoroughly assessed. Atenolol and nadolol caused the aggregation of CA-AuNPs via hydrogen bonding interactions which reduced the spectral overlap between the donor and acceptor, impairing the FRET process and consequently the emission of the QDs was restored. Under the optimized conditions, the obtained results exhibited a linear relationship between the QD PL recovery signal and atenolol concentration of up to 11.22 mg L-1 with a detection limit of 1.05 mg L-1. This FRET sensing platform was successfully applied in the determination of atenolol in pharmaceutical formulations with recovery values ranging from 97.4 to 104.3%.
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|