1
|
Sharma R, Rana DS, Awasthi A, Singh D, Ibrahim AA, Umar A, Baskoutas S. Nitrogen functionalized biomass derived mesoporous carbon nanomaterials for electrochemical detection of lead (II) ions. Heliyon 2024; 10:e39090. [PMID: 39506954 PMCID: PMC11538739 DOI: 10.1016/j.heliyon.2024.e39090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
This study has explored the sustainable solution after designing an economical metal-free biomass-derived nanocarbon for the selective sensing of lead. The nitrogen and sulfur-rich mesoporous nanocarbon is designed through a facile hydrothermal-assisted thermal annealing method. The high-temperature treatment gave nanocarbon unique carbon dot decorated layered morphology, while nitrogen and sulfur precursor thiourea and melamine strengthened the nanomaterial stability, sensitivity, and selectivity toward lead metal ions. The high specific surface area of mesoporous nanocarbon viz., 1671.93 m2/g with the pore width and pore volume of 2.02 nm and 0.476 cm3/g has enhanced the conductivity of as-synthesized sensor, which helps in increasing sensitivity toward lead. The high conductivity was also confirmed through cyclic voltammetry, where an 80 % increment in current was observed in the case of the modified electrode when compared with bare GCE. The differential pulse normal voltammetry and differential pulse anodic stripping voltammetry were performed to calculate the detection limit, where an excellent detection limit of 22 nM was obtained from the DPASV technique. Moreover, the nanomaterial was also tested for detecting lead in tap water. The as-synthesized nanocomposite is highly efficient and selective for the detection of lead. This study will motivate the researchers to engineer sustainable and efficient devices for sensing metal pollutants.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | | | - Abhishek Awasthi
- Department of Biotechnology, School of Basic and Applied Sciences, Maharaja Agrasen University, Baddi, 174103, HP, India
| | - Dilbag Singh
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | - Ahmed A. Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
- STEM Pioneers Training Lab, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
- STEM Pioneers Training Lab, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26504, Patras, Greece
| |
Collapse
|
2
|
Xhanari K, Finšgar M. Recent advances in the modification of electrodes for trace metal analysis: a review. Analyst 2023; 148:5805-5821. [PMID: 37697964 DOI: 10.1039/d3an01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.
Collapse
Affiliation(s)
- Klodian Xhanari
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
- University of Tirana, Faculty of Natural Sciences, Boulevard "Zogu I", 1001 Tirana, Albania
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
3
|
Beas-Bernuy LC, Cardenas-Riojas AA, Calderon-Zavaleta SL, Quiroz-Aguinaga U, La Rosa-Toro A, López EO, Asencios YJO, Baena-Moncada AM, Muedas-Taipe G. Cd 2+ Detection by an Electrochemical Electrode Based on MWCNT-Orange Peel Activated Carbon. ACS OMEGA 2023; 8:37341-37352. [PMID: 37841145 PMCID: PMC10569008 DOI: 10.1021/acsomega.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
This study reports the development of a new electrochemical sensor based on a carbon paste electrode (CPE) composed of biomass-based orange peel activated carbon (ACOP) and multiwalled carbon nanotubes (MWCNTs), and this composite is used for the electrochemical detection of cadmium ions (Cd2+). The ACOP/MWCNT composite was characterized by FTIR, Raman, and electrochemical impedance spectroscopy. The electrochemical evaluation of Cd2+ was performed using square wave and cyclic voltammetry. The ACOP/MWCNT-CPE electrochemical sensor exhibited a coefficient of determination r2 of 0.9907, a limit of detection of 0.91 ± 0.79 μmol L-1, and a limit of quantification of 3.00 ± 2.60 μmol L-1. In addition, the developed sensor can selectively detect Cd2+ in the presence of different interferents such as Zn2+, Pb2+, Ni2+, Co2+, Cu2+, and Fe2+ with a relative standard deviation (RSD) close to 100%, carried out in triplicate experiments. The ACOP/MWCNT-CPE presented high sensitivity, stability, and reproducibility and was successfully applied for the detection of Cd2+ in river water samples with recovery rate values ranging from 97.33 to 115.6%, demonstrating to be a very promising analytical alternative for the determination of cadmium ions in this matrix.
Collapse
Affiliation(s)
- Luis C. Beas-Bernuy
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Andy A. Cardenas-Riojas
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Sandy L. Calderon-Zavaleta
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Ulises Quiroz-Aguinaga
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Adolfo La Rosa-Toro
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
- Centro
para el Desarrollo de Materiales Avanzados y Nanotecnología
(CEMAT), Facultad de Ciencias de la Universidad
Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Elvis O. López
- Department
of Experimental Low Energy Physics, Brazilian
Center for Research in Physics (CBPF), Rio de Janeiro 22290-180, Brazil
| | - Yvan J. O. Asencios
- Institute
of Marine Sciences, Federal University of
São Paulo (UNIFESP), Rua. Maria Máximo, 168, Santos, Sao Paulo 11030-100, Brazil)
| | - Angelica M. Baena-Moncada
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| | - Golfer Muedas-Taipe
- Laboratorio
de Investigación de Electroquímica of Aplicada, Facultad de Ciencias de la Universidad Nacional de
Ingeniería, Av.
Túpac Amaru 210, Rímac, Lima 51, Peru
| |
Collapse
|
4
|
Mamat X, Aisa HA, Chen L. Nanostructured N, S, and P-Doped Elaeagnus Angustifolia Gum-Derived Porous Carbon with Electrodeposited Silver for Enhanced Electrochemical Sensing of Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091571. [PMID: 37177117 PMCID: PMC10181190 DOI: 10.3390/nano13091571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) is regularly used for antipyretic and analgesic purposes. Overdose or long-term exposure to APAP could lead to liver damage and hepatotoxicity. In this study, the approach of enhanced electrochemical detection of APAP by nanostructured biomass carbon/silver was developed. Porous biomass carbon derived from Elaeagnus Angustifolia gum was prepared by pyrolysis with co-doping of electron-rich elements of nitrogen, sulfur, and phosphorus. The electrodeposition of silver onto a glassy carbon electrode modified with porous carbon could enhance the sensing signal towards APAP. Two linear ranges from 61 nM to 500 μM were achieved with a limit of detection of 33 nM. The developed GCE sensor has good anti-interference, stability, reproducibility, and human urine sample analysis performance. The silver-enhanced biomass carbon GCE sensor extends the application of biomass carbon, and its facile preparation approach could be used in constructing disposable sensing chips in the future.
Collapse
Affiliation(s)
- Xamxikamar Mamat
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Longyi Chen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
5
|
Biomass-derived carbon nanomaterials for sensor applications. J Pharm Biomed Anal 2023; 222:115102. [DOI: 10.1016/j.jpba.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
6
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
7
|
Xu C, Li G, Zhou M, Hu Z. Carbon nanorods assembled coral-like hierarchical meso-macroporous carbon as sustainable materials for efficient biosensing and biofuel cell. Anal Chim Acta 2022; 1220:339994. [DOI: 10.1016/j.aca.2022.339994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
|
8
|
Wang WJ, Lu XY, Kong FY, Li HY, Wang ZX, Wang W. A reduced graphene oxide supported Au-Bi bimetallic nanoparticles as an enhanced sensing platform for simultaneous voltammetric determination of Pb (II) and Cd (II). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Wang L, Peng X, Fu H. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Barros TM, Medeiros de Araújo D, Lemos de Melo AT, Martínez-Huitle CA, Vocciante M, Ferro S, Vieira dos Santos E. An Electroanalytical Solution for the Determination of Pb 2+ in Progressive Hair Dyes Using the Cork-Graphite Sensor. SENSORS 2022; 22:s22041466. [PMID: 35214367 PMCID: PMC8875311 DOI: 10.3390/s22041466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
Abstract
Lead is one of the most toxic metals for living organisms: once absorbed by soft tissues, it is capable of triggering various pathologies, subsequently bioaccumulating in the bones. In consideration of this, its detection and quantification in products for human consumption and use is of great interest, especially if the procedure can be carried out in an easy, reproducible and economical way. This work presents the results of the electroanalytical determination of lead in three different commercial products used as progressive hair dyes. Analyses were performed by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) using a composite cork–graphite sensor in 0.5M H2SO4 solution or 0.1M acetate buffer (pH 4.5), in the presence and absence of hair dye samples. The H2SO4 solution gave better results in terms of analyte sensitivity than the acetate buffer electrolyte. In both cases, well-defined signals for lead were obtained by DPSV analyses, enabling the calibration curve and figures of merit to be determined. The limits of detection (LOD) were found to be approximately 1.06 µM and 1.26 µM in H2SO4 and acetate buffer, respectively. The DPSV standard addition method was successfully applied to quantify the lead in hair dye samples, yielding values below 0.45% in Pb. All three analyzed samples were shown to comply with the limit set by the Brazilian Health Regulatory Agency, i.e., 0.6% lead in this type of product. The comparison of the electroanalytical results with those obtained by the reference method, based on the use of inductively coupled plasma optical emission spectrometry (ICP–OES), confirmed that the electroanalytical detection approach is potentially applicable as a strategy for quality control.
Collapse
Affiliation(s)
- Thalita Medeiros Barros
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
| | - Danyelle Medeiros de Araújo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Laboratório de Eletroquímica e Química Analítica, Programa de Pós Graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Natal 59.610-210, RN, Brazil
| | - Alana Tamires Lemos de Melo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Laboratório de Eletroquímica e Química Analítica, Programa de Pós Graduação em Ciências Naturais, Universidade do Estado do Rio Grande do Norte, Natal 59.610-210, RN, Brazil
| | - Carlos Alberto Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
| | - Marco Vocciante
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy;
| | - Sergio Ferro
- Ecas4 Australia Pty Ltd., Mile End South, SA 5031, Australia
- Correspondence: (S.F.); (E.V.d.S.)
| | - Elisama Vieira dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal do Rio Grande do Norte, Lagoa Nova, Natal 59.072-900, RN, Brazil; (T.M.B.); (D.M.d.A.); (A.T.L.d.M.); (C.A.M.-H.)
- Correspondence: (S.F.); (E.V.d.S.)
| |
Collapse
|
11
|
Zhang K, Zhuo Z, Fan G, Wang Z, Chen S, Xu L, Wen Y, Wang P. Nano-ZnS decorated hierarchically porous carbon electrocatalyst with multiple enzyme-like activities as a nanozyme sensing platform for simultaneous detection of dopamine, uric acid, guanine, and adenine. NANOSCALE 2021; 13:20078-20090. [PMID: 34846060 DOI: 10.1039/d1nr06017a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The simultaneous detection of multiple biological small molecules is critical for human health evaluation and disease prevention. In this study, a nano-ZnS decorated hierarchically porous carbon (ZSHPC) electrocatalyst with multiple enzyme-like activities as a nanozyme sensing platform for simultaneous derivative voltametric detection of four important biological small molecules, dopamine (DA), uric acid (UA), guanine (G), and adenine (A), is successfully synthesized via an in situ hydrothermal reaction using leaves of Cinnamomum camphora (L.) after the extraction of essential oil as a carbon source, ZnCl2 as both zinc source and an activator, sulfuric acid as a sulfur source, and silica gel as a hard template. Activator together with the introduction of silica gel is beneficial for tuning pore structure. The in situ synthesized ZnS nanoparticles and sulfur doping improve the conductivity and cycling stability of the material. The ZSHPC electrode with multiple enzyme-like activities and oxidase-like characteristics was employed for the simultaneous detection of multiple target molecules in linear ranges of 0.3-500 μM with detection limits of 0.12 μM for DA, 0.26 μM for UA, 0.07 μM for G, and 0.075 μM for A. A derivative technique was selected for enhancing the peak resolution of the partial overlapped voltammograms and eliminating human error. Both the coefficient of determination and residual prediction deviation were used to evaluate this technique.
Collapse
Affiliation(s)
- Kai Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| | - Zhonghui Zhuo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| | - Guorong Fan
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| | - Lulu Xu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Yangping Wen
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China.
| |
Collapse
|
12
|
Zhong J, Zhao H, Cheng Y, Feng T, Lan M, Zuo S. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hydrogel. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Bilge S, Karadurmus L, Sınağ A, Ozkan SA. Green synthesis and characterization of carbon-based materials for sensitive detection of heavy metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Advanced surface analysis using GCIB-C60++-tandem-ToF-SIMS and GCIB-XPS of 2-mercaptobenzimidazole corrosion inhibitor on brass. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sivan S, Shankar SS, N S, Kandambath Padinjareveetil A, Pilankatta R, Kumar VBS, Mathew B, George B, Makvandi P, Černík M, Padil VVT, Varma RS. Fabrication of a Greener TiO 2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb 2+ Ions in Plastic Toys. ACS OMEGA 2020; 5:25390-25399. [PMID: 33043219 PMCID: PMC7542840 DOI: 10.1021/acsomega.0c03781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 05/25/2023]
Abstract
A novel greener methodology is reported for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) using gum Arabic (Acacia senegal) and the characterization of the ensuing TiO2 NPs by various techniques such as X-ray diffraction (XRD), Fourier transform infrared, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray, transmission electron microscopy (TEM), high resolution-TEM, and UV-visible spectroscopy. The XRD analysis confirmed the formation of TiO2 NPs in the anatase phase with high crystal purity, while TEM confirmed the size to be 8.9 ± 1.5 nm with a spherical morphology. The electrode for the electrochemical detection of Pb2+ ions was modified by a carbon paste fabricated using the synthesized TiO2 NPs. Compared to the bare electrode, the fabricated electrode exhibited improved electro-catalytic activity toward the reduction of Pb2+ ions. The detection limit, quantification limit, and the sensitivity of the developed electrode were observed by using differential pulse voltammetry to be 506 ppb, 1.68 ppm, and 0.52 ± 0.01 μA μM-1, respectively. The constructed electrode was tested for the detection of lead content in plastic toys.
Collapse
Affiliation(s)
| | - Sarojini Sharath Shankar
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - Sajina N
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Periye 671316 India
| | | | - Rajendra Pilankatta
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - V. B. Sameer Kumar
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - Beena Mathew
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam 686560, Kerala, India
| | - Bini George
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Periye 671316 India
| | - Pooyan Makvandi
- Chemistry
Department, Faculty of Science, Shahid Chamran
University of Ahvaz, Ahvaz 6153753843, Iran
- Institute
for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy
| | - Miroslav Černík
- Department
of Nanomaterials in Natural Sciences, Institute for Nanomaterials,
Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech
Republic
| | - Vinod V. T. Padil
- Department
of Nanomaterials in Natural Sciences, Institute for Nanomaterials,
Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech
Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| |
Collapse
|
16
|
Finšgar M, Jezernik K. The Use of Factorial Design and Simplex Optimization to Improve Analytical Performance of In Situ Film Electrodes. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3921. [PMID: 32674513 PMCID: PMC7411898 DOI: 10.3390/s20143921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
This work presents a systematic approach to determining the significance of the individual factors affecting the analytical performance of in-situ film electrode (FE) for the determination of Zn(II), Cd(II), and Pb(II). Analytical parameters were considered simultaneously, where the lowest limit of quantification, the widest linear concentration range, and the highest sensitivity, accuracy, and precision of the method evidenced a better analytical method. Significance was evaluated by means of a fractional factorial (experimental) design using five factors, i.e., the mass concentrations of Bi(III), Sn(II), and Sb(III), to design the in situ FE, the accumulation potential, and the accumulation time. Next, a simplex optimization procedure was employed to determine the optimum conditions for these factors. Such optimization of the in situ FE showed significant improvement in analytical performance compared to the in situ FEs in the initial experiments and compared to pure in situ FEs (bismuth-film, tin-film, and antimony-film electrodes). Moreover, using the optimized in situ FE electrode, a possible interference effect was checked for different species and the applicability of the electrode was demonstrated for a real tap water sample.
Collapse
Affiliation(s)
- Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | | |
Collapse
|