1
|
El-Maghrabey M, Seino S, Kishikawa N, Kuroda N. The Development of a Selective Colorimetric Sensor for Cu 2+ and Zn 2+ in Mineral Supplement with Application of a Smartphone Paper-Based Assay of Cu 2+ in Water Samples. SENSORS (BASEL, SWITZERLAND) 2024; 24:7844. [PMID: 39686381 DOI: 10.3390/s24237844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Herein, we developed a colorimetric method for the determination of Cu2+ and Zn2+ using NBD-G as a novel selective metal sensor. NBD-G was easily synthesized by a nucleophilic substitution reaction between 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) and Girard's Reagent P. The NBD-G solution is yellow, but when it reacts with Cu2+ and Zn2+, its color changes selectively to red (510 nm) and orange (480 nm), respectively. NBD-G was used as a sensor for Cu2+ and Zn2+, showing a high sensitivity down to 0.77 µM for Cu2+ and 1.66 µM for Zn2+. NBD-G could determine both metals simultaneously; thus, it was applied to determine them in multimineral supplements, which showed excellent recoveries. Next, a filter paper impregnated with NBD-G was prepared as a test paper, and a simple, selective, and rapid onsite method for quantifying Cu2+ was developed as, interestingly, the paper showed no change upon the addition of Zn2+. Next, Cu2+ could be quantified with high selectivity and accuracy by photographing the color change with a smartphone camera and processing the image with Image J. The detection limit for Cu2+ using this method was 3.9 µM. Finally, the NBD-G test paper method was able to satisfactorily quantify Cu2+ spiked into the rainwater.
Collapse
Affiliation(s)
- Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Shōta Seino
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
2
|
Fan W, Yang S, Kou Y, Wang X, Zhang Q, Tan H. An internal filtration effect-based "off-on" probe for fluorescent and visual sensing of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:458-464. [PMID: 38165784 DOI: 10.1039/d3ay01551c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Formaldehyde (FA) sensing in children's toys and water has great application prospects in the protection of home safety and the ecological environment. However, there has been no report heretofore addressing FA detection in children's toys. In this work, a fluorescent (FL) whitening agent (FWA), potassium dichromate, and sulfuric acid were proposed as an "off-on" probe (FPD) for FA sensing via FL and visual FL (VFL) methods. The FL emission of the FWA at 435 nm was quenched by Cr2O72- because of the internal filtration effect. The effect was interrupted after the addition of FA because Cr2O72- was reduced to Cr3+, accompanying the recovery of the FL emission of the FWA. The detection limit of FPD for FA via FL and VFL approaches was 2.03 and 85.5 μg L-1, respectively. The proposed probe was successfully utilized for FA detection in crawling mats and building blocks as well as environmental water (verified by the UV method), indicating good adaptability. The FPD-based FL method might be a potential approach for FA detection due to the merits of high selectivity, anti-interference ability, and stability.
Collapse
Affiliation(s)
- Wanli Fan
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Shiwei Yang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Yan Kou
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Xiao Wang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan 473000, China.
| | - Qiling Zhang
- Wusheng County Environmental Monitoring Station, Guang'an, Sichuan 638400, China
| | - Huijing Tan
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610031, China
| |
Collapse
|
3
|
Yang S, Fan W, Wang X, Kou Y, Tan H, Yang F. Fluorescent and visual sensing of sodium dodecylbenzene sulfonate with an aminosilane self-condensation promoting and electrostatic attraction effect-based ratiometric probe. Anal Chim Acta 2023; 1284:341997. [PMID: 37996152 DOI: 10.1016/j.aca.2023.341997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Increasing attention has been paid to sodium dodecylbenzene sulfonate (SDBS) detection because it could cause damage to human body and environmental water. For example, SDBS must not be detected on tableware surface according to national standard of China (GB 14934-2016). However, there is no report heretofore addressing SDBS sensing on surfaces. More importantly, the interferents often affect the sensing performance of analytical approaches. Hence, there is an urgent need to establish a method with good anti-interference ability for SDBS detection both on tableware surfaces and in water. RESULTS Inspired by a finding that SDBS could cause the generation of white turbidity in (3-aminopropyl)trimethoxysilane (APTMS, an aminosilane) aqueous solution, APTMS modified Mn doped ZnS quantum dots (QDs) and fluorescent (FL) whitening agent (FWA) were constructed as a ratiometric probe for FL and visual sensing of SDBS. The modified QDs aggregated and settled in presence of SDBS, which was likely to be connected to the stimulatory effect of SDBS on the APTMS self-condensation and the electrostatic attraction. The FL emission from the QDs at 605 nm then decreased dramatically, whereas that at 425 nm was virtually constant owing to FWA. SDBS sensing could be achieved by calculating the ratio change of their FL intensities. The detection limits of FL and visual methods were found to be 0.011 and 10 μg/L, respectively, making it one of the most sensitive approaches in literature. Finally, it was successfully utilized for SDBS detection on tableware surfaces and in water. SIGNIFICANCE Herein, the specific interaction between SDBS and APTMS was reported and the reaction mechanisms were explored for the first time. The proposed probe based on the effect described above provided a promising potential for SDBS analysis owing to high sensitivity, selectivity, anti-interference ability, and stability (in 20 days).
Collapse
Affiliation(s)
- Shiwei Yang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Wanli Fan
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Xiao Wang
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Yan Kou
- School of Civil Engineering and Architecture, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Huijing Tan
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610031, China
| | - Fan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Fan W, Yang S, Zhang Y, Huang B, Gong Z, Wang D, Fan M. Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2',4,4',6,6'-Hexanitrostilbene. ACS Sens 2020; 5:3599-3606. [PMID: 33155795 DOI: 10.1021/acssensors.0c01908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2,2',4,4',6,6'-Hexanitrostilbene (HNS) is an explosive with better explosion performance than the well-known 2,4,6-trinitrotoluene (TNT). Surprisingly, unlike other nitroaromatic explosives, there are limited reports regarding the detection of the HNS, let alone sensing reports on surface residues. In this work, a multifunctional flexible SERS sensor was proposed for the indirect detection of HNS based on the transparent fixate gel pads. The sticky and flexible gel pad can effectively collect any HNS surface residues. The inherent amine groups within the gel pad of which the main ingredient is polyurethane can react with HNS to form the orange Meisenheimer-alike complex. The modification of Ag NPs with halide ions was screened for the best SERS performance. KI-modified-citrate-reduced Ag NPs showed selective but enormous SERS enhancement for the HNS derivative. The detection of HNS in the solution phase was explored, and a linear range of 0.01-25 ppm was achieved. The lowest detectable amount (LDA) of HNS was found to be 50 pg, making it one of the most sensitive methods in literature. It was successfully utilized for the HNS residues sensing on fingerprints and bags with LDAs of 5 and 200 ng, respectively. In addition, other explosives including TATB, LLM-105, RDX, HMX, FOX-7, and TNT were also examined to assess the selectivity of the fixate. It was found that the fixate showed excellent selectivity for HNS.
Collapse
Affiliation(s)
- Wanli Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shiwei Yang
- School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Bing Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621999, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
5
|
Wang X, Zhang X, Cao H, Huang Y. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B 2020; 8:10837-10844. [DOI: 10.1039/d0tb02078h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The UA@Ti3C2 QDs with blue light emission were synthesized by a simple and green microwave-assisted method, and used as a sensitive and selective probe for the detection of TNP both on surfaces and in solution.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Haiyan Cao
- Key Laboratory of Chongqing Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|