1
|
Darío Pierini G, Andrés Bortolato S, Noel Robledo S, Raquel Alcaraz M, Fernández H, Casimiro Goicoechea H, Alicia Zon M. Second-order electrochemical data generation to quantify carvacrol in oregano essential oils. Food Chem 2022; 368:130840. [PMID: 34450499 DOI: 10.1016/j.foodchem.2021.130840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
A novel analytical method using voltammetric second-order modeling based on multivariate curve resolution-alternating least-square (MCR-ALS) is presented for the first time for the quantitation of carvacrol (CAR) in oregano essential oils (OEO). The second-order cyclic voltammetry data were generated on the basis that CAR shows a diffusional system. Thus, the scan rate (v) was used as a second instrumental mode and cyclic voltammograms at different v were acquired for a single sample, generating the second-order data. CAR determination was performed in presence of thymol, included as a potential interferent. Results demonstrated that MCR-ALS successfully exploited the second-order advantage and the recoveries were not statistically different than 100%. The limits of detection and quantitation were estimated using the MCR-ALS which were 6.27 × 10-5°mol°L-1°and 1.90 × 10-4°mol L-1, respectively. Finally, the developed methodology was implemented to quantify of CAR in OEO samples.
Collapse
Affiliation(s)
- Gastón Darío Pierini
- Departamento de Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal N° 3, 5800 Río Cuarto, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Santiago Andrés Bortolato
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| | - Sebastian Noel Robledo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Agencia Postal N°3 (5800), Río Cuarto, Argentina.
| | - Mirta Raquel Alcaraz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina.
| | - Héctor Fernández
- Departamento de Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal N° 3, 5800 Río Cuarto, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Héctor Casimiro Goicoechea
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, Santa Fe S3000ZAA, Argentina.
| | - María Alicia Zon
- Departamento de Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal N° 3, 5800 Río Cuarto, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| |
Collapse
|
2
|
Puthongkham P, Wirojsaengthong S, Suea-Ngam A. Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry. Analyst 2021; 146:6351-6364. [PMID: 34585185 DOI: 10.1039/d1an01148k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors have been successfully used in a wide range of applications, but systematic optimization and nonlinear relationships have been compromised for electrode fabrication and data analysis. Machine learning and experimental designs are chemometric tools that have been proved to be useful in method development and data analysis. This minireview summarizes recent applications of machine learning and experimental designs in electroanalytical chemistry. First, experimental designs, e.g., full factorial, central composite, and Box-Behnken are discussed as systematic approaches to optimize electrode fabrication to consider the effects from individual variables and their interactions. Then, the principles of machine learning algorithms, including linear and logistic regressions, neural network, and support vector machine, are introduced. These machine learning models have been implemented to extract complex relationships between chemical structures and their electrochemical properties and to analyze complicated electrochemical data to improve calibration and analyte classification, such as in electronic tongues. Lastly, the future of machine learning and experimental designs in electrochemical sensors is outlined. These chemometric strategies will accelerate the development and enhance the performance of electrochemical devices for point-of-care diagnostics and commercialization.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. .,Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supacha Wirojsaengthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Akkapol Suea-Ngam
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Dinç E, Selimoğlu F, Ünal N, Ertekin ZC. Simultaneous Determination of the Acid Dissociation Constants of Phenolics by Multivariate Analysis of pH and Ultraviolet-Visible Spectrophotometric Measurements. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1880424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Erdal Dinç
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Faysal Selimoğlu
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Nazangül Ünal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zehra Ceren Ertekin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|