1
|
Lackey HE, Espley AF, Potter SM, Lamadie F, Miguirditchian M, Nelson GL, Bryan SA, Lines AM. Quantification of Lanthanides on a PMMA Microfluidic Device with Three Optical Pathlengths Using PCR of UV-Visible, NIR, and Raman Spectroscopy. ACS OMEGA 2024; 9:38548-38556. [PMID: 39310177 PMCID: PMC11411548 DOI: 10.1021/acsomega.4c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Microfluidic devices (MFDs) offer customizable, low-cost, and low-waste platforms for performing chemical analyses. Optical spectroscopy techniques provide nondestructive monitoring of small sample volumes within microfluidic channels. Optical spectroscopy can probe speciation, oxidation state, and concentration of analytes as well as detect counterions and provide information about matrix composition. Here, ultraviolet-visible (UV-vis) absorbance, near-infrared (NIR) absorbance, and Raman spectroscopy are utilized on a custom poly(methyl methacrylate) (PMMA) MFD for the detection of three lanthanide nitrates in solution. Absorbance spectroscopies are conducted across three pathlengths using three portions of a contiguous channel within the MFD. Univariate and chemometric multivariate modeling, specifically Beer's law regression and principal component regression (PCR), respectively, are utilized to quantify the three lanthanides and the nitrate counterion. Models are composed of spectra from one or multiple pathlengths. Models are also constructed from multiblock spectra composed of UV-vis, NIR, and Raman spectra at one or multiple pathlengths. Root-mean-square errors (RMSE), limit of detection (LOD), and residual predictive deviation (RPD) values are compared for univariate, multivariate, multi-pathlength, and multiblock models. Univariate modeling produces acceptable results for analytes with a simple signal, such as samarium cations, producing an LOD of 5.49 mM. Multivariate and multiblock models produce enhanced quantification for analytes that experience spectral overlap and interfering nonanalyte signals, such as holmium, which had an LOD reduction from 7.21 mM for the univariate model down to 3.96 mM for the multiblock model. Multi-pathlength models are developed that maintain model errors in line with single-pathlength models. Multi-pathlength models have RPDs from 9.18 to 46.4, while incorporating absorbance spectra collected at optical paths of up to 10-fold difference in length.
Collapse
Affiliation(s)
- Hope E. Lackey
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Alyssa F. Espley
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Savannah M. Potter
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fabrice Lamadie
- CEA,
DES, ISEC, DMRC, Univ Montpellier, Marcoule, 30207 Bagnols-sur-Cèze, France
| | | | | | - Samuel A. Bryan
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Amanda M. Lines
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Rahman KMT, Butzin NC. Counter-on-chip for bacterial cell quantification, growth, and live-dead estimations. Sci Rep 2024; 14:782. [PMID: 38191788 PMCID: PMC10774380 DOI: 10.1038/s41598-023-51014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Quantifying bacterial cell numbers is crucial for experimental assessment and reproducibility, but the current technologies have limitations. The commonly used colony forming units (CFU) method causes a time delay in determining the actual numbers. Manual microscope counts are often error-prone for submicron bacteria. Automated systems are costly, require specialized knowledge, and are erroneous when counting smaller bacteria. In this study, we took a different approach by constructing three sequential generations (G1, G2, and G3) of counter-on-chip that accurately and timely count small particles and/or bacterial cells. We employed 2-photon polymerization (2PP) fabrication technology; and optimized the printing and molding process to produce high-quality, reproducible, accurate, and efficient counters. Our straightforward and refined methodology has shown itself to be highly effective in fabricating structures, allowing for the rapid construction of polydimethylsiloxane (PDMS)-based microfluidic devices. The G1 comprises three counting chambers with a depth of 20 µm, which showed accurate counting of 1 µm and 5 µm microbeads. G2 and G3 have eight counting chambers with depths of 20 µm and 5 µm, respectively, and can quickly and precisely count Escherichia coli cells. These systems are reusable, accurate, and easy to use (compared to CFU/ml). The G3 device can give (1) accurate bacterial counts, (2) serve as a growth chamber for bacteria, and (3) allow for live/dead bacterial cell estimates using staining kits or growth assay activities (live imaging, cell tracking, and counting). We made these devices out of necessity; we know no device on the market that encompasses all these features.
Collapse
Affiliation(s)
- K M Taufiqur Rahman
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
3
|
Mavrakis E, Toprakcioglu Z, Lydakis-Simantiris N, Knowles TPJ, Pergantis SA. A chip-based supersonic microfluidic nebulizer for efficient sample introduction into inductively coupled plasma - Mass spectrometry. Anal Chim Acta 2022; 1229:340342. [PMID: 36156219 DOI: 10.1016/j.aca.2022.340342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
As the use of microfluidic chips for handling biological samples is increasing, so is the need for combining them with powerful analytical techniques for metal determination such as inductively-coupled plasma mass spectrometry (ICP-MS). So far, coupling a microfluidic chip to an ICP-MS has been demonstrated mainly through the use of conventional pneumatic micro-flow nebulizers. However, disadvantages associated with the use of such nebulizers entail dead volume issues and liquid suction exerted on the outlet channel of the chip. Herein, we propose that a microfluidic chip, bearing a pneumatic nozzle for liquid nebulization, has the potential to advance metal determination in chip-based ICP-MS. More specifically, we demonstrate for the first time that the coupling of a chip-based supersonic microfluidic nebulizer (chip-μf-Neb) to an ICP-MS can be conveniently achieved through the use of a spray chamber with a laminar flow makeup gas. Operation of the combined system was evaluated at low liquid flow rates across 0.5-20 μL min-1, while nebulization and makeup argon (Ar) gas flow rates were optimized with respect to maximizing indium (In) sensitivity and minimizing oxide formation; a maximum sensitivity of 40000 cps (μg L-1)-1 was achieved at 10 μL min-1. The system was further evaluated for its performance in single-particle analysis, featuring a transport efficiency of 46% for Ag nanoparticles. Finally, the capabilities for conducting single-cell analysis were demonstrated with the detection of 80Se and 75As in individual Chlamydomas reinhardtii cells, which were previously incubated in 20 μM of selenate and 300 μM of arsenate, respectively. Efficient operation at low liquid flow rates along with the absence of self-aspiration render this nebulizer a promising tool for combining the powerful field of microfluidics with metal quantitation by means of ICP-MS.
Collapse
Affiliation(s)
- E Mavrakis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece
| | - Z Toprakcioglu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - N Lydakis-Simantiris
- Laboratory of Biological & Biotechnological Applications, Department of Agriculture, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece; Hellenic Mediterranean University Research Center, Institute of Agri-food and Life Sciences, Heraklion, Crete, Greece
| | - T P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
| | - S A Pergantis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 70013, Greece.
| |
Collapse
|
4
|
Recent progress in analytical capillary isotachophoresis (2018 - March 2022). J Chromatogr A 2022; 1677:463337. [PMID: 35868155 DOI: 10.1016/j.chroma.2022.463337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022]
Abstract
This review brings a survey of papers on analytical capillary and microchip isotachophoresis published since 2018 until the first quarter of 2022. Theoretical papers extending fundamental knowledge include those on computer simulations that remain an important research tool useful in the design of electrolyte systems. Many papers are focused on instrumental aspects where new media including microfluidic devices and their hyphenation to various detection techniques bring remarkable results. Papers reporting analytical applications demonstrate the potential of contemporary analytical isotachophoresis. Although it is not being used on a mass scale, its special features are attracting continued interest resulting in applications of isotachophoresis both as a stand-alone analytical method and as a part of multidimensional separation techniques.
Collapse
|
5
|
Kajner G, Kéri A, Bélteki Á, Valkai S, Dér A, Geretovszky Z, Galbács G. Multifunctional microfluidic chips for the single particle inductively coupled plasma mass spectrometry analysis of inorganic nanoparticles. LAB ON A CHIP 2022; 22:2766-2776. [PMID: 35786729 DOI: 10.1039/d2lc00377e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed at exploiting the so far unexploited potential of carrying out on-line sample pretreatment steps on microfluidic chips for single particle inductively coupled plasma mass spectrometry (spICP-MS) measurements, and demonstrating their ability to practically facilitate most of the simpler tasks involved in the spICP-MS analysis of nanoparticles. For this purpose, polydimethylsiloxane microfluidic chips, capable of high-range dilution and sample injection were made by casting, using high-precision, 3D-printed molds. Optimization of their geometry and functions was done by running several hydrodynamic simulations and by gravimetric, fluorescence enhanced microscope imaging and solution-based ICP-MS experiments. On the optimized microfluidic chips, several experiments were done, demonstrating the benefits of the approach and these devices, such as the determination of nanoparticle concentration using only a few tens of microliters of sample, elimination of solute interferences by dilution, solution-based size calibration and characterisation of binary nanoparticles. Due to the unique design of the chips, they can be linked together to extend the dilution range of the system by more than a magnitude per chip. This feature was also demonstrated in applications requiring multiple-magnitude dilution rates, when two chips were sequentially coupled.
Collapse
Affiliation(s)
- Gyula Kajner
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Albert Kéri
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Ádám Bélteki
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Sándor Valkai
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - András Dér
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - Zsolt Geretovszky
- Dept. of Opt, and Quant. Electr. Univ. of Szeged, Dóm sq. 9, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| |
Collapse
|
6
|
Piestansky J, Cizmarova I, Matuskova M, Mikus P. Comparison of 1D a 2D ITP-MS performance parameters and application possibilities: Ultratrace determination of B vitamins in human urine. Electrophoresis 2021; 43:998-1009. [PMID: 34597419 DOI: 10.1002/elps.202100209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022]
Abstract
The possibility to investigate analytes at ultra-low concentration levels still remains a hot topic in bioanalysis. In this area, various preconcentration techniques are an integral part of analytical procedures. When applying electromigration separation techniques, an isotachophoresis has been advantageously employed many times for this purpose. To solve current biomedical tasks effectively, an advanced two-dimensional isotachophoretic instrument (in a hydrodynamically closed separation system with an enhanced sample load capacity) hyphenated with mass spectrometry (ITP-ITP-MS) has been proposed by Foret and coworkers. As a continuation, this work represents the first study dealing with a full validation of an ITP-ITP-MS method. In order to see the benefits of an online ITP sample pretreatment (preconcentration and clean-up) on the performance parameters, the developed 2D ITP-MS method was compared with a corresponding 1D ITP-MS method. Application potentialities of the compared methods were demonstrated via a determination of two B vitamins, namely thiamine and pyridoxine, in human urine samples. The developed 2D ITP-MS method showed its enhanced effectivity and usefulness for a routine biomedical use (here, a reliable screening of trace B vitamins in human urine without an offline sample preparation).
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
8
|
Nelson GL, Lackey HE, Bello JM, Felmy HM, Bryan HB, Lamadie F, Bryan SA, Lines AM. Enabling Microscale Processing: Combined Raman and Absorbance Spectroscopy for Microfluidic On-Line Monitoring. Anal Chem 2021; 93:1643-1651. [PMID: 33337856 DOI: 10.1021/acs.analchem.0c04225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microfluidics have many potential applications including characterization of chemical processes on a reduced scale, spanning the study of reaction kinetics using on-chip liquid-liquid extractions, sample pretreatment to simplify off-chip analysis, and for portable spectroscopic analyses. The use of in situ characterization of process streams from laboratory-scale and microscale experiments on the same chemical system can provide comprehensive understanding and in-depth analysis of any similarities or differences between process conditions at different scales. A well-characterized extraction of Nd(NO3)3 from an aqueous phase of varying NO3- (aq) concentration with tributyl phosphate (TBP) in dodecane was the focus of this microscale study and was compared to an earlier laboratory-scale study utilizing counter current extraction equipment. Here, we verify that this same extraction process can be followed on the microscale using spectroscopic methods adapted for microfluidic measurement. Concentration of Nd (based on UV-vis) and nitrate (based on Raman) was chemometrically measured during the flow experiment, and resulting data were used to determine the distribution ratio for Nd. Extraction distributions measured on the microscale were compared favorably with those determined on the laboratory scale in the earlier study. Both micro-Raman and micro-UV-vis spectroscopy can be used to determine fundamental parameters with significantly reduced sample size as compared to traditional laboratory-scale approaches. This leads naturally to time, cost, and waste reductions.
Collapse
Affiliation(s)
- Gilbert L Nelson
- Department of Chemistry, College of Idaho, 2112 Cleveland Blvd, Caldwell, Idaho 83605, United States
| | - Hope E Lackey
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Job M Bello
- Spectra Solutions Incorporated, 1502 Providence Highway, Norwood, Massachusetts 02062-4643, United States
| | - Heather M Felmy
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Hannah B Bryan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Fabrice Lamadie
- CEA, DES, ISEC, DMRC, Univ Montpellier, SA2I, 30207 Bagnols-sur-Ceze, Marcoule, France
| | - Samuel A Bryan
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Amanda M Lines
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|