1
|
Duan H, Zhao L, Wang J, Wang X, Zheng L, Huang X. Integrating lateral flow device with controllable gold in situ growth for sensitive detection of staphylococcal enterotoxin A in milk. Anal Chim Acta 2024; 1329:343233. [PMID: 39396296 DOI: 10.1016/j.aca.2024.343233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Gold nanoparticle-based lateral flow immunoassays (AuNP-LFIA) are widely used for pathogen monitoring to prevent foodborne illness outbreaks. However, conventional AuNP-LFIA exhibits poor sensitivity and limited quantitative capacity due to the low colorimetric signal intensity of AuNPs. Herein, we introduced a low-background gold in situ growth (GISG) strategy by lowering the pH of the growth solution to weaken the reducibility of hydroxylamine, thereby enhancing the sensitivity of AuNP-LFIA. Additionally, we developed a universal and manufacturable lateral flow device to streamline the GISG process. We applied this device to detect staphylococcal enterotoxin A (SEA), an exotoxin produced by Staphylococcus aureus. Under optimal conditions, the proposed device demonstrated superior practicality and excellent sensitivity for SEA detection, achieving a detection limit of 0.061 ng/mL with the total detection time of 37 min, showing 311 times more sensitive than the unamplified AuNP-LFIA. Furthermore, SEA detection in milk samples showed a strong correlation (R2 = 0.8845) with results obtained from a conventional ELISA kit. Therefore, this promising LFIA device offers a novel strategy with high sensitivity and practicality for in-field detection of Staphylococcus aureus and can be easily adapted for screening other foodborne pathogens.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lirong Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Jiali Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Xue Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
2
|
Duan H, Wang X, Li H, Zheng L, Huang X. Multifunctional Fe 3O 4@CuS nanoparticle-driven colorimetric and photothermal immunochromatographic test strip for the sensitive detection of Salmonella typhimurium in milk. Anal Chim Acta 2024; 1323:343091. [PMID: 39182977 DOI: 10.1016/j.aca.2024.343091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Magnetic nanoparticles are widely employed as signal labeling reporters in immunochromatographic test strips (ICTS) for detecting foodborne pathogens due to their outstanding anti-interference and magnetic enrichment performance. However, the insufficient colorimetric signal brightness of magnetic nanoparticles results in poor sensitivity, hindering their ability to meet the growing demand for advanced ICTS. Herein, we synthesized Fe3O4@CuS core-shell structure nanoparticles using a facile in-situ growth method. These Fe3O4@CuS nanoparticles exhibit a superior photothermal conversion efficiency of 42.12 % and a magnetization strength of 35 emu/g. We developed a dual-readout format ICTS based on Fe3O4@CuS, incorporating both colorimetric and photothermal formats to enhance sensitivity for Salmonella typhimurium detection. The limit of detection for Fe3O4@CuS-ICTS in the colorimetric and photothermal format was 5 × 10⁴ CFU/mL and 7.7 × 10³ CFU/mL, respectively. Additionally, the average recoveries ranged from 91.25 % to 103.39 %, with variations from 2.2 % to 11.1 %, demonstrating good accuracy and precision. Therefore, this work suggests that Fe3O4@CuS nanoparticles, with their superior magnetic, optical, and photothermal properties, can serve as promising signal labeling reporters to improve the detection performance of ICTS and hold potential for constructing more accurate and sensitive point-of-care testing platforms.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Xuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Haichuan Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
3
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
4
|
Liu X, Li F, Qiu Y, Huang Z, Sun X, Zhu Y, Yu W, Jiang D, Wan H, Pan Y, Wang P. Triple Cascade Quantum-Strip for Heart Failure Point-of-Care Testing. ACS Sens 2024; 9:29-41. [PMID: 38199966 DOI: 10.1021/acssensors.3c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Heart failure (HF) is a life-threatening syndrome. Timely and accurate bedside monitoring of the occurrence and progression of HF via measurements of multiple HF-related biomarkers remains a challenge. Here, we report a triple cascade quantum-strip (TCQS) sensing strategy for the rapid and selective multiplex-tracing of three clinically validated HF biomarkers (BNP/NT-proBNP/ST2) in serum. High selectivity to the three biomarkers is achieved by controlling the individual recognition ability of three target-specific quantum immunoprobes and tuning their simultaneous use to BNP/NT-proBNP/ST2 recognition without mutual interference, which allows the three biomarkers to be directly enriched from serum samples. Benefiting from the fast release-binding kinetics of target-bound immunoprobes on TCQS, recognizable fluorescent signals can be rapidly read out through combining with a self-designed smartphone-based portable reader. This rapid and simple profiling strategy results in good specificity and sensitivity with LODs of 0.097, 0.072, and 0.948 ng/mL for BNP, NT-proBNP, and ST2, respectively, which match the need of clinical applications. Real serum samples are tested with an accuracy of 92.86% for HF diagnosis, validating the capability of the smartphone-read TCQS for practical applications. In particular, the simultaneous detection of the TCQS sensing strategy for BNP/NT-proBNP/ST2 will facilitate the accurate monitoring of HF occurrence, risk stratification, progression, and prognosis as a powerful POCT tool.
Collapse
Affiliation(s)
- Xin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengheng Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuoru Huang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deming Jiang
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yuxiang Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
5
|
Chen G, Chen X, Xu G, Wei X, Lin X, Su Y, Xiong Y, Huang X. Ultrabright orange-yellow aggregation-induced emission nanoparticles for highly sensitive immunochromatographic quantification of ochratoxin A in corn. Food Chem 2023; 412:135580. [PMID: 36736185 DOI: 10.1016/j.foodchem.2023.135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.
Collapse
Affiliation(s)
- Guoxin Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ge Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangkai Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
6
|
Lv Y, Fan J, Zhao M, Wu R, Li LS. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. NANOSCALE 2023; 15:5560-5578. [PMID: 36866747 DOI: 10.1039/d2nr07247e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.
Collapse
Affiliation(s)
- Yanbing Lv
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Jinjin Fan
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Man Zhao
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Ruili Wu
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Advantages of aggregation-induced luminescence microspheres compared with fluorescent microspheres in immunochromatography assay with sandwich format. Anal Chim Acta 2023; 1247:340869. [PMID: 36781245 DOI: 10.1016/j.aca.2023.340869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.
Collapse
|
8
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Jiang J, Luo P, Liang J, Shen X, Lei H, Li X. A highly sensitive and quantitative time resolved fluorescent microspheres lateral flow immunoassay for streptomycin and dihydrostreptomycin in milk, honey, muscle, liver, and kidney. Anal Chim Acta 2022; 1192:339360. [DOI: 10.1016/j.aca.2021.339360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/01/2022]
|
11
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|