1
|
Zhang J, Wang K, Li K, Zhang L, Dong X, Bian L. An efficient fluorescence reversible regulation strategy with single labelled oligonucleotide HEX-OND successively triggered by Hg(II) and Cysteine: The application and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122817. [PMID: 37210852 DOI: 10.1016/j.saa.2023.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023]
Abstract
An efficient fluorescence reversible regulation system with HEX-OND was developed. Then the application potential was explored in probing Hg(II) & Cysteine (Cys) in real samples and the thermodynamic mechanism was further investigated by precise theory analysis combining multiple spectroscopic methods. The results showed that only mere disturbances were observed among 15 and 11 kinds of other substances for the optimal system in detecting Hg(II) & Cys, respectively; The linear ranges of quantification were identified as 1.0 ∼ 14.0 and 2.0 ∼ 20.0 (×10-8 mol/L) with LODs of 8.75 and 14.09 (×10-9 mol/L) for Hg(II) and Cys, respectively; no significant deviations were found in the quantification results of Hg(II) in three traditional Chinese herbs and Cys in two samples between the well-understood methods with ours respectively, showing excellent selectivity, sensitivity, and tremendous application feasibility. The detailed mechanism was further verified as that the introduced Hg(II) forced HEX-OND to transform into the Hairpin structure with the apparent equilibrium association constant of 6.02 ± 0.62 × 1010 L/mol in the bimolecular ratio, leading to the equimolar quencher, consecutive two guanine bases ((G)2), approaching and spontaneously static-quenching the reporter HEX (hexachlorofluorescein) (equilibrium constant, 8.75 ± 1.97 × 107 L/mol) in the Photo-induced Electron Transfer (PET) way that was driven by the Electrostatic Interaction. The additional Cys destructed the equimolar Hairpin structure with the apparent equilibrium constant of 8.87 ± 2.47 × 105 L/mol through breaking one of the formed T-Hg(II)-T mismatches by association with the involved Hg(II), occasioning (G)2 apart from HEX and consequently the fluorescence recovery.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xiaoting Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
2
|
Zhang J, Zhang L, Zhou Y, Li K, Dai X, Bian L. The fluorescence regulation of a tri-functional oligonucleotide probe HEX-OND in detecting Pb(II), cysteine, and K(I) based on two G-quadruplex forms. Anal Bioanal Chem 2023; 415:2763-2774. [PMID: 37103561 DOI: 10.1007/s00216-023-04681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
A novel tri-functional probe HEX-OND was developed for detecting Pb(II), cysteine (Cys), and K(I) by fluorescence quenching, recovery, and amplification strategies respectively, based on Pb(II)-induced chair-type G-quadruplex (CGQ) and K(I)-induced parallel G-quadruplex (PGQ). The thermodynamic mechanism was illustrated as that HEX-OND transformed into CGQ by associating equimolar Pb(II) (K1 = 1.10 ± 0.25 × 106 L/mol), forcing (G)2 spontaneously approaching and static-quenching HEX (5'-hexachlorofluorescein phosphoramidite) in the photo-induced electron transfer (PET) way by the van der Waals force and hydrogen bond (K2 = 5.14 ± 1.65 × 107 L/mol); the additional Cys recovered fluorescence in the molecular ratio of 2:1 via Pb(II)-precipitation induced CGQ destruction (K3 = 3.03 ± 0.77 × 109 L/mol); the equimolar K(I) induced HEX-OND transforming into PGQ (K4 = 3.53 ± 0.30 × 104 L/mol) and specifically associating with the equimolar N-methyl mesoporphyrin IX (NMM) by hydrophobic force (K5 = 3.48 ± 1.08 × 105 L/mol), leading to the fluorescence enhancement. Moreover, the practicability results showed that the detection limits reached a nanomolar level for Pb(II) and Cys and micromolar for K(I), with mere disturbances for 6, 10, and 5 kinds of other substances, respectively; no significant deviations of the real sample detection results were found between the well-understood methods with ours in detecting Pb(II) and Cys, and K(I) could be recognized and quantified even in the presence of Na(I) with 5000 and 600 fold respectively. The results demonstrated the triple-function, sensitivity, selectivity, and tremendous application feasibility of the current probe in sensing Pb(II), Cys, and K(I).
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Ling Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yaqi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kewei Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xufen Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
3
|
Li Z, Song W, Zhu Y, Yan L, Zhong X, Zhang M, Li H. The Full Cytosine-Cytosine Base Paring: Self-Assembly and Crystal Structure. Chemistry 2023; 29:e202203979. [PMID: 36757279 DOI: 10.1002/chem.202203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The synthesis of self-assembly systems that can mimic partial biological behaviours require ingenious and delicate design. For decades, scientists are committed to exploring new base pairing patterns using hydrogen bonds directed self-assembly of nucleotides. A fundamental question is the adaptive circumstance of the recognition between base pairs, namely, how solvent conditions affect the domain of base pairs. Towards this question, three nucleotide complexes based on 2'-deoxycytidine-5'-monophosphate (dCMP) and cytidine-5'-monophosphate (CMP) were synthesized in different solvents and pH values, and an unusual cytosine-cytosine base paring pattern (named full C : C base pairing) has been successfully obtained. Systematic single crystal analysis and 1 H NMR titration spectra have been performed to explore factors influencing the formation of base paring patterns. Moreover, supramolecular chirality of three complexes were studied using circular dichroism (CD) spectroscopy in solution and solid-state combined with crystal structure analysis.
Collapse
Affiliation(s)
- Zhongkui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Yan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Menglei Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Yang L, Zhang Z, Zhang R, Du H, Zhou T, Wang X, Wang F. A “ turn on” fluorescent sensor for Hg2+ detection based on rolling circle amplification with DNA origami-assisted signal amplification strategy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor. Int J Mol Sci 2022; 23:ijms23116326. [PMID: 35683005 PMCID: PMC9180964 DOI: 10.3390/ijms23116326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene oxide is well known for its excellent fluorescence quenching ability. In this study, positively charged graphene oxide (pGO25000) was developed as a fluorescence quencher that is water-soluble and synthesized by grafting polyetherimide onto graphene oxide nanosheets by a carbodiimide reaction. Compared to graphene oxide, the fluorescence quenching ability of pGO25000 is significantly improved by the increase in the affinity between pGO25000 and the DNA strand, which is introduced by the additional electrostatic interaction. The FAM-labeled single-stranded DNA probe can be almost completely quenched at concentrations of pGO25000 as low as 0.1 μg/mL. A simple and novel FAM-labeled single-stranded DNA sensor was designed for Hg2+ detection to take advantage of exonuclease I-triggered single-stranded DNA hydrolysis, and pGO25000 acted as a fluorescence quencher. The FAM-labeled single-stranded DNA probe is present as a hairpin structure by the formation of T–Hg2+–T when Hg2+ is present, and no fluorescence is observed. It is digested by exonuclease I without Hg2+, and fluorescence is recovered. The fluorescence intensity of the proposed biosensor was positively correlated with the Hg2+ concentration in the range of 0–250 nM (R2 = 0.9955), with a seasonable limit of detection (3σ) cal. 3.93 nM. It was successfully applied to real samples of pond water for Hg2+ detection, obtaining a recovery rate from 99.6% to 101.1%.
Collapse
|
6
|
Jin X, Sun T, Wu Z, Wang D, Hu F, Xu J, Li X, Qiu J. Label-free hairpin probe for the rapid detection of Hg(II) based on T-Hg(II)-T. Anal Chim Acta 2022; 1221:340113. [DOI: 10.1016/j.aca.2022.340113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
|
7
|
Li L, Wang J, Xu S, Li C, Dong B. Recent Progress in Fluorescent Probes For Metal Ion Detection. Front Chem 2022; 10:875241. [PMID: 35494640 PMCID: PMC9043490 DOI: 10.3389/fchem.2022.875241] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
All forms of life have absolute request for metal elements, because metal elements are instrumental in various fundamental processes. Fluorescent probes have been widely used due to their ease of operation, good selectivity, high spatial and temporal resolution, and high sensitivity. In this paper, the research progress of various metal ion (Fe3+,Fe2+,Cu2+,Zn2+,Hg2+,Pb2+,Cd2+) fluorescent probes in recent years has been reviewed, and the fluorescence probes prepared with different structures and materials in different environments are introduced. It is of great significance to improve the sensing performance on metal ions. This research has a wide prospect in the application fields of fluorescence sensing, quantitative analysis, biomedicine and so on. This paper discusses about the development and applications of metal fluorescent probes in future.
Collapse
Affiliation(s)
- Luanjing Li
- Sdu-Anu Joint Science College, Shandong University, Weihai, China
| | - Jiahe Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Shihan Xu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Chunxia Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
8
|
Du R, Yang X, Jin P, Guo Y, Cheng Y, Yu H, Xie Y, Qian H, Yao W. G-quadruplex based biosensors for the detection of food contaminants. Crit Rev Food Sci Nutr 2022; 63:8808-8822. [PMID: 35389275 DOI: 10.1080/10408398.2022.2059753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.
Collapse
Affiliation(s)
- Rong Du
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Suzhou, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Wang P, Zhou D, Xue S, Chen B, Wen S, Yang X, Wu J. Rational design of dual-functional peptide-based chemosensor for sequential detection of Ag+ (AgNPs) and S2- ions by fluorescent and colorimetric changes and its application in live cells, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|