1
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
2
|
Wang W, Xia L, Xiao X, Li G. Recent Progress on Microfluidics Integrated with Fiber-Optic Sensors for On-Site Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2067. [PMID: 38610279 PMCID: PMC11014287 DOI: 10.3390/s24072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This review introduces a micro-integrated device of microfluidics and fiber-optic sensors for on-site detection, which can detect certain or several specific components or their amounts in different samples within a relatively short time. Fiber-optics with micron core diameters can be easily coated and functionalized, thus allowing sensors to be integrated with microfluidics to separate, enrich, and measure samples in a micro-device. Compared to traditional laboratory equipment, this integrated device exhibits natural advantages in size, speed, cost, portability, and operability, making it more suitable for on-site detection. In this review, the various optical detection methods used in this integrated device are introduced, including Raman, ultraviolet-visible, fluorescence, and surface plasmon resonance detections. It also provides a detailed overview of the on-site detection applications of this integrated device for biological analysis, food safety, and environmental monitoring. Lastly, this review addresses the prospects for the future development of microfluidics integrated with fiber-optic sensors.
Collapse
Affiliation(s)
| | | | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; (W.W.); (L.X.)
| |
Collapse
|
3
|
Huang R, Li M, Qu Z, Liu Y, Lu X, Li R, Zou L. Label-free fluorescence detection of mercury ions based on thymine-mercury-thymine structure and CRISPR-Cas12a. Food Res Int 2024; 180:114058. [PMID: 38395579 DOI: 10.1016/j.foodres.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.
Collapse
Affiliation(s)
- Ruoying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zenglin Qu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoxing Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China.
| |
Collapse
|
4
|
Li D, Lv Y, Xia H, Huang J, Liu W, Yu J, Jing G, Liu W, Sun Y, Li W. Target-activated multivalent sensing platform for improving the sensitivity and selectivity of Hg2+ detection. Anal Chim Acta 2023; 1256:341123. [PMID: 37037627 DOI: 10.1016/j.aca.2023.341123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Sensitivity and selectivity are critical parameters to evaluate the performance of sensors. For trace detection, it remains a challenge to design a new sensor that achieves high sensitivity and selectivity simultaneously. Here, we present a target-activated dual Mg2+-dependent DNAzyme (MNAzyme) that served as a simple sensing model to explore the multivalency in improving the analytical sensitivity and selectivity for target detection. Mercury ion (Hg2+), a notorious toxic metal ion, was selected as a model target. In the presence of Hg2+, the thymine-rich regions of the hairpin probe and primer could hybridize to form a stable duplex via the thymine-Hg2+-thymine structure. Then, an intact enzyme sequence was exposed and two separate enzyme fragments were close to each other, generating a dual MNAzyme. Benefiting from the localized high-concentration of the enzyme strand, the dual MNAzyme showed a remarkable improvement in binding stability. The catalytic rate constant of the dual MNAzyme was theoretically 1.60 times higher than that of the monomeric counterpart, and the sensitivity and selectivity had 4.50 and 1.44-fold enhancement, respectively. When the dual MNAzyme was used for sensor applications, the limit of detection was determined to be 0.04 and 0.2 nM via UV-vis spectrophotometer and naked eye, respectively. Meanwhile, the method offered desirable selectivity toward Hg2+ against other metal ions. With the advantages of simple operation, high sensitivity, and desirable selectivity, the developed multivalent sensing platform could be easily expanded in the future for the on-site detection of other low-abundance analytes.
Collapse
Affiliation(s)
- Dongyan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yuxiong Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Huaiyue Xia
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yingying Sun
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
5
|
Hu T, Lai Q, Fan W, Zhang Y, Liu Z. Advances in Portable Heavy Metal Ion Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4125. [PMID: 37112466 PMCID: PMC10143460 DOI: 10.3390/s23084125] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Heavy metal ions, one of the major pollutants in the environment, exhibit non-degradable and bio-chain accumulation characteristics, seriously damage the environment, and threaten human health. Traditional heavy metal ion detection methods often require complex and expensive instruments, professional operation, tedious sample preparation, high requirements for laboratory conditions, and operator professionalism, and they cannot be widely used in the field for real-time and rapid detection. Therefore, developing portable, highly sensitive, selective, and economical sensors is necessary for the detection of toxic metal ions in the field. This paper presents portable sensing based on optical and electrochemical methods for the in situ detection of trace heavy metal ions. Progress in research on portable sensor devices based on fluorescence, colorimetric, portable surface Raman enhancement, plasmon resonance, and various electrical parameter analysis principles is highlighted, and the characteristics of the detection limits, linear detection ranges, and stability of the various sensing methods are analyzed. Accordingly, this review provides a reference for the design of portable heavy metal ion sensing.
Collapse
|
6
|
Wang Z, Lou X. Recent Progress in Functional-Nucleic-Acid-Based Fluorescent Fiber-Optic Evanescent Wave Biosensors. BIOSENSORS 2023; 13:bios13040425. [PMID: 37185500 PMCID: PMC10135899 DOI: 10.3390/bios13040425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Biosensors capable of onsite and continuous detection of environmental and food pollutants and biomarkers are highly desired, but only a few sensing platforms meet the "2-SAR" requirements (sensitivity, specificity, affordability, automation, rapidity, and reusability). A fiber optic evanescent wave (FOEW) sensor is an attractive type of portable device that has the advantages of high sensitivity, low cost, good reusability, and long-term stability. By utilizing functional nucleic acids (FNAs) such as aptamers, DNAzymes, and rational designed nucleic acid probes as specific recognition ligands, the FOEW sensor has been demonstrated to be a general sensing platform for the onsite and continuous detection of various targets ranging from small molecules and heavy metal ions to proteins, nucleic acids, and pathogens. In this review, we cover the progress of the fluorescent FNA-based FOEW biosensor since its first report in 1995. We focus on the chemical modification of the optical fiber and the sensing mechanisms for the five above-mentioned types of targets. The challenges and prospects on the isolation of high-quality aptamers, reagent-free detection, long-term stability under application conditions, and high throughput are also included in this review to highlight the future trends for the development of FOEW biosensors capable of onsite and continuous detection.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
7
|
Mei Y, Yang S, Li C, Chen W, Liu R, Xu K. A signal-on fluorescent biosensor for mercury detection based on a cleavable phosphorothioate RNA fluorescent probe and metal-organic frameworks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4418-4425. [PMID: 36300422 DOI: 10.1039/d2ay01476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mercury contamination is a major environmental concern. In this work, we used a cleavable phosphorothioate (PS) fluorescence probe quenched by UiO-66-NH2 to develop a "signal-on" fluorescent biosensor for Hg2+ detection. The probe was bound to UiO-66-NH2 through π-π stacking and hydrogen bonding, thereby extinguishing the fluorescence of the FAM-labelled probe. The PS site was cleaved in the presence of Hg2+, releasing the FAM group and significantly enhancing the fluorescence signal. The intensity of the fluorescence linearly rose as the Hg2+ concentration increased in the range of 1-100 nM (R2 = 0.994), and the limit of detection was 0.118 nM (S/N = 3). This biosensor demonstrated high selectivity for Hg2+ and was effectively applied to quantification of Hg2+ in various water samples with acceptable recovery rates. These results suggest that this practical, straightforward technology is a good option for monitoring mercury ions in the environment.
Collapse
Affiliation(s)
- Yang Mei
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Si Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Wenliang Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Rong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Kexin Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
8
|
|
9
|
Lv Z, Zhang M, Jin H, Huang Y, Wei M. Screen‐printed electrode‐based homogeneous electrochemical aptasensor for mercury (
II
) based on reduced graphene oxide and exonuclease
III
‐driven cyclic reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeping Lv
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Mingli Zhang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Yawei Huang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control Henan University of Technology Zhengzhou People's Republic of China
| |
Collapse
|
10
|
Highly sensitive and efficient fluorescent sensing for Hg2+ detection based on triple-helix molecular switch and exonuclease III-assisted amplification. Anal Chim Acta 2022; 1205:339751. [DOI: 10.1016/j.aca.2022.339751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
|
11
|
Yi Z, Zhou Y, Ren Y, Hu W, Long F, Zhu A. A novel sensitive DNAzyme-based optical fiber evanescent wave biosensor for rapid detection of Pb 2+ in human serum. Analyst 2022; 147:1467-1477. [PMID: 35266947 DOI: 10.1039/d2an00043a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe here a portable DNAzyme-based optical fiber evanescent wave biosensor (OFEWB) for the rapid and sensitive detection of Pb2+ in human serum. Unlike other biosensors, the OFEWB dispensed with the complicated process of attaching biometric elements to the optical fiber, and the optical fiber directly acted as a transducer to transmit the excitation light and simultaneously collected the fluorescence, which could simplify the detection process, avoid the susceptibility to interference from complex environments and strengthen the reusability of the biosensor. The fluorescence (Cy3) labelled substrate sequence (GR-5S-Cy3) could be cleaved under the catalysis of the GR-5 DNAzyme sequence (GR-5E-BHQ2) in the presence of Pb2+; then the released fluorescence labelled fragments could be directly excited and detected by the OFEWB due to the high transmission efficiency of the excitation light and fluorescence in the OFEWB. Several key factors affecting Pb2+ detection were investigated in detail and optimized. Under the optimal conditions, the LOD of Pb2+ in human serum was 9.34 nM (equivalent to 93.4 nM in whole serum) with a detection range of 0-120 nM. The possible matrix interference was evaluated with different spiked human serum samples, and the recovery of Pb2+ ranged from 74.4% to 112.5% with RSD < 14.8%, implying this method had excellent practicability and could be potentially used in analyzing some biomedical samples.
Collapse
Affiliation(s)
- Zhihao Yi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yue Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yashuang Ren
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Feng Long
- School of Environment and Natural Resource, Renmin University of China, Beijing, 100872, China.
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
12
|
Cui J, Zhou M, Li Y, Liang Z, Li Y, Yu L, Liu Y, Liang Y, Chen L, Yang C. A New Optical Fiber Probe-Based Quantum Dots Immunofluorescence Biosensors in the Detection of Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:665241. [PMID: 34136417 PMCID: PMC8203335 DOI: 10.3389/fcimb.2021.665241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common clinical pathogenic bacteria with strong pathogenicity and usually leads to various suppurative infections with high fatality. Traditional bacterial culture for the detection of S. aureus is prone to diagnosis and antimicrobial treatment delays because of its long-time consumption and low sensitivity. In this study, we successfully developed a quantum dots immunofluorescence biosensor for S. aureus detection. The biosensor combined the advantages of biosensors with the high specificity of antigen-antibody immune interactions and the high sensitivity and stability of quantum dots fluorescence. The results demonstrated that the biosensor possessed high specificity and high sensitivity for S. aureus detection. The detection limit of S. aureus reached 1 × 104 CFU/ml or even 1 × 103 CFU/ml, and moreover, the fluorescence intensity had a significant positive linear correlation relationship with the logarithm of the S. aureus concentration in the range of 103–107 CFU/ml (correlation coefficient R2 = 0.9731, P = 0.011). A specificity experiment showed that this biosensor could effectively distinguish S. aureus (1 × 104 CFU/ml and above) from other common pathogenic (non-S. aureus) bacteria in nosocomial infections, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. Additionally, the whole detection procedure spent only 2 h. In addition, the biosensor in this study may not be affected by the interference of the biofilm or other secretions since the clinical biological specimens are need to be fully liquefied to digest and dissolve viscous secretions such as biofilms before the detection procedure of the biosensor in this study. In conclusion, the biosensor could meet the need for rapid and accurate S. aureus detection for clinical application.
Collapse
Affiliation(s)
- Jiewei Cui
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Minjuan Zhou
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China.,State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Ying Li
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhixin Liang
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanqin Li
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Ling Yu
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuan Liang
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Liangan Chen
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| |
Collapse
|