1
|
Mou J, Ding J, Qin W. Modern Potentiometric Biosensing Based on Non-Equilibrium Measurement Techniques. Chemistry 2023; 29:e202302647. [PMID: 37733874 DOI: 10.1002/chem.202302647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Modern potentiometric sensors based on polymeric membrane ion-selective electrodes (ISEs) have achieved new breakthroughs in sensitivity, selectivity, and stability and have extended applications in environmental surveillance, medical diagnostics, and industrial analysis. Moreover, nonclassical potentiometry shows promise for many applications and opens up new opportunities for potentiometric biosensing. Here, we aim to provide a concept to summarize advances over the past decade in the development of potentiometric biosensors with polymeric membrane ISEs. This Concept article articulates sensing mechanisms based on non-equilibrium measurement techniques. In particular, we emphasize new trends in potentiometric biosensing based on attractive dynamic approaches. Representative examples are selected to illustrate key applications under zero-current conditions and stimulus-controlled modes. More importantly, fruitful information obtained from non-equilibrium measurements with dynamic responses can be useful for artificial intelligence (AI). The combination of ISEs with advanced AI techniques for effective data processing is also discussed. We hope that this Concept will illustrate the great possibilities offered by non-equilibrium measurement techniques and AI in potentiometric biosensing and encourage further innovations in this exciting field.
Collapse
Affiliation(s)
- Junsong Mou
- CAS Key Laboratory of Coastal Environmental Processes, and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiawang Ding
- CAS Key Laboratory of Coastal Environmental Processes, and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, P. R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong (P. R. China), Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes, and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, Shandong, P. R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong (P. R. China), Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, Shandong, P. R. China
| |
Collapse
|
2
|
Han T, Song T, Bao Y, Sun Z, Ma Y, He Y, Gan S, Jiang D, Han D, Bobacka J, Niu L. Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Bondar A, Mikhelson K. Constant Potential Coulometric Measurements with Ca 2+-Selective Electrode: Analysis Using Calibration Plot vs. Analysis Using the Charge Curve Fitting. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22031145. [PMID: 35161889 PMCID: PMC8838552 DOI: 10.3390/s22031145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The possibility of analysis using charge curve fitting in constant potential coulometric mode instead of using a calibration plot is explored, for the first time. The results are compared with the analysis based on the use of a calibration plot. A Ca2+ ion-selective electrode, with and without an electronic capacitor in series, is used as a model system in pure solutions of CaCl2. Both techniques delivered good results (error within 2%) when the final and the initial concentration values differed by not more than three times. Larger differences result in 10-25% error. The presence of an electronic capacitor in the measurement circuit and in series with the electrode, allows for significantly faster response.
Collapse
|