1
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Pandey A, Momeni O, Pandey P. Quantitative Analysis of Genomic DNA Degradation of E. coli Using Automated Gel Electrophoresis under Various Levels of Microwave Exposure. Gels 2024; 10:242. [PMID: 38667661 PMCID: PMC11049425 DOI: 10.3390/gels10040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The problem that this study addresses is to understand how microwave radiation is able to degrade genomic DNA of E. coli. In addition, a comparative study was made to evaluate the suitability of a high-throughput automated electrophoresis platform for quantifying the DNA degradation under microwave radiation. Overall, this study investigated the genomic DNA degradation of E. coli under microwave radiation using automated gel electrophoresis. To examine the viable organisms and degradation of genomic DNA under microwave exposure, we used three methods: (1) post-microwave exposure, where E. coli was enumerated using modified mTEC agar method using membrane filtration technique; (2) extracted genomic DNA of microwaved sample was quantified using the Qubit method; and (3) automated gel electrophoresis, the TapeStation 4200, was used to examine the bands of extracted DNA of microwaved samples. In addition, to examine the impacts of microwaves, E. coli colonies were isolated from a fecal sample (dairy cow manure), these colonies were grown overnight to prepare fresh E. coli culture, and this culture was exposed to microwave radiation for three durations: (1) 2 min; (2) 5 min; and (3) 8 min. In general, Qubit values (ng/µL) were proportional to the results of automated gel electrophoresis, TapeStation 4200, DNA integrity numbers (DINs). Samples from exposure studies (2 min, 5 min, and 8 min) showed no viable E. coli. Initial E. coli levels (at 0 min microwave exposure) were 5 × 108 CFU/mL, and the E. coli level was reduced to a non-detectable level within 2 min of microwave exposure. The relationships between Qubit and TapeStation measurements was linear, except for when the DNA level was lower than 2 ng/µL. In 8 min of microwave exposure, E. coli DNA integrity was reduced by 61.7%, and DNA concentration was reduced by 81.6%. The overall conclusion of this study is that microwave radiation had a significant impact on the genomic DNA of E. coli, and prolonged exposure of E. coli to microwaves can thus lead to a loss of genomic DNA integrity and DNA concentrations.
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616, USA; (A.P.); (O.M.)
| | - Omeed Momeni
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA 95616, USA; (A.P.); (O.M.)
| | - Pramod Pandey
- Department of Population Health and Reproduction, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Yang J, Li Z, Zhang D, Yamaguchi Y, Xiao W. Direct count of fluorescent microspheres in a microfluidic chip based on the capillary electrophoresis method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37334474 DOI: 10.1039/d3ay00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Fluorescent microspheres (FMs) are tiny particles with special functions that are widely employed in biological research. Counting of microscale FMs is a great challenge by capillary electrophoresis. Herein we developed a method to count 2 μm FMs based on a microfluidic chip with a gradual change in inner size. Such a microfluidic chip can inhibit sample blocking at the inlet of the capillary. The results showed that FMs migrated in the wide part of the microchannel side by side, and then passed through the narrow part one by one. There was a linear relationship between the number of peaks in the electropherogram and concentration of FMs if they were running in the microchannel for more than 20 min. A high separation voltage may lead to aggregation of FMs in the microchannels, and about 2 × 104 FMs can be counted within 30 min by this microfluidic chip.
Collapse
Affiliation(s)
- Jing Yang
- Anhui Sanlian University, Hefei 230000, China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yoshinori Yamaguchi
- Picotecbio-Waseda Joint Research Lab, Faculty of Science and Engineering, Waseda University, Saitama, 367-0035, Japan.
| | - Wen Xiao
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
4
|
Li A, Xue S, Xu Y, Ding S, Wen D, Zhang Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal Chim Acta 2023; 1239:340693. [PMID: 36628761 DOI: 10.1016/j.aca.2022.340693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A critical challenge in using deep eutectic solvents (DESs) in capillary electrophoresis (CE) is to develop separation systems in which a DES can really work as a single entity. To achieve this, the authors recently demonstrated a novel strategy that takes advantage of the aqueous dispersibility of hydrophobic DESs (or more accurately hydrophobic eutectic solvents (HESs)). However, the previous work was limited only to the separation of achiral analytes, e.g., analogues, homologues, and isomers. The present study was designed as a follow-up study in order to explore the feasibility of employing HES-type pseudo-stationary phases (PSPs) in CE for chiral separations. By using carboxymethyl-β-cyclodextrin (CM-β-CD) as a model chiral selector, we provide the first evidence that there is a potential synergistic effect between HESs and traditional chiral selectors. Specifically, the combined use of HES (-)-menthol:octanoic acid and CM-β-CD allowed excellent enantioseparations of several basic drugs which were not able to be resolved in the single CM-β-CD system. The enantioresolutions were significantly improved while the migration times of the enantiomers were also shortened due to the hydrophobic mechanism of the HES-type PSP. Critical factors influencing the novel chiral CE system were systematically investigated. Since HESs are considered as "designer" solvents with highly tunable properties, this study demonstrates the potential of employing HESs (or HDES)-type PSPs in CE for chiral separations.
Collapse
Affiliation(s)
- Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Di Wen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
5
|
Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis. Viruses 2022; 14:v14112539. [PMID: 36423148 PMCID: PMC9695396 DOI: 10.3390/v14112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. This paper describes the implementation of a highly sensitive method, capillary electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF) detector to monitor the impact of various bioprocess steps on the quality of different viral vectors. The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This method outperforms other analytical methods, such as SDS-polyacrylamide gel electrophoresis with Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack of suitable analytical tools. This method was also qualified for quantification of rAAV2 according to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of different virus-based targets, with a great potential for application in biomanufacturing.
Collapse
|
6
|
The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins. SEPARATIONS 2022. [DOI: 10.3390/separations9100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Capillary electrophoresis (CE) is a versatile analytical separation method in the field of biochemistry. Although it has been proved that the relative molecular mass (Mr) of the polymers determines the threshold concentration of the entangled polymer solution, which will affect the separation performance of DNA molecules, there is still no report on the effect of Mr on the separation performance of proteins. Herein, we have thoroughly performed the CE of proteins ranged from 14.3 kDa to 116 kDa in a mixed hydroxyethyl cellulose (HEC) solution. The mixed solution was obtained with various Mr including 90,000, 250,000, 720,000, and 1,300,000. Then, we found that the mixed polymer provided a high resolution for small protein molecules while increasing the efficiency of large ones. Results demonstrated that the migration time decreased if HEC (1,300,000) was mixed with the lower Mr one, and the mixed solution (1,300,000/250,000) offered the highest resolution. The resolution was negatively correlated with the electric field strength. Finally, we have employed the optimal electrophoretic conditions to separate proteins in human tears, and it showed that lysozyme, lipocalin, and lactoferrin from human tears were successfully resolved in the mixed HEC. Such work indicates that CE has the potential to be developed as a tool for the diagnosis of xerophthalmia, meibomian gland dysfunction, or other eye diseases.
Collapse
|
7
|
Hydrophobic deep eutectic solvents as pseudo-stationary phases in capillary electrokinetic chromatography: An explorative study. Anal Chim Acta 2022; 1213:339936. [DOI: 10.1016/j.aca.2022.339936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
|