1
|
Standard dilution analysis using an automatic sampler and a peristaltic pump stopping step for ICP-OES determinations. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
2
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
3
|
Song J, Bang S, Choi N, Kim HN. Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. BIOMICROFLUIDICS 2022; 16:061301. [PMID: 36438549 PMCID: PMC9691285 DOI: 10.1063/5.0121476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases and neurodevelopmental disorders have become increasingly prevalent; however, the development of new pharmaceuticals to treat these diseases has lagged. Animal models have been extensively utilized to identify underlying mechanisms and to validate drug efficacies, but they possess inherent limitations including genetic heterogeneity with humans. To overcome these limitations, human cell-based in vitro brain models including brain-on-a-chip and brain organoids have been developed. Each technique has distinct advantages and disadvantages in terms of the mimicry of structure and microenvironment, but each technique could not fully mimic the structure and functional aspects of the brain tissue. Recently, a brain organoid-on-a-chip (BOoC) platform has emerged, which merges brain-on-a-chip and brain organoids. BOoC can potentially reflect the detailed structure of the brain tissue, vascular structure, and circulation of fluid. Hence, we summarize recent advances in BOoC as a human brain avatar and discuss future perspectives. BOoC platform can pave the way for mechanistic studies and the development of pharmaceuticals to treat brain diseases in future.
Collapse
Affiliation(s)
- Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Nakwon Choi
- Authors to whom correspondence should be addressed:; ; and
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
4
|
Wang X, Cheng S, Liu C, Zhang Y, Su M, Rong X, Zhu H, Yu M, Sheng W, Zhu B. A novel ratiometric fluorescent probe for the detection of nickel ions in the environment and living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156445. [PMID: 35675887 DOI: 10.1016/j.scitotenv.2022.156445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Nickel resources are abundant in the world, and the application of nickel in production and life is more and more extensive. However, excessive nickel entering the environment will not only cause environmental pollution but also seriously endanger plants, animals and human health. Nickel compounds are carcinogenic and have been classified as a class 1 carcinogen. Nickel mainly exists in the form of divalent ions in the environment. However, there are few simple and effective methods for the detection of nickel ions, and these methods still have certain limitations. At present, the mechanisms of nickel influence in organisms are also unclear. Therefore, we constructed a ratiometric fluorescent probe Ra-Ni, which can achieve its own self-calibration and avoid the interference of other factors, thereby realizing the specific identification of nickel ions. The probe can detect nickel ions sensitively with a detection limit as low as 26.2 nM and can respond in a short time (< 2 min), which proves the great potential of the probe in the detection of nickel ions. At the same time, Ra-Ni has also been successfully used for imaging nickel ions in living cells and zebrafish, providing an effective tool for the study of physiological and pathological processes. The detection effect of nickel ions in actual water sample is also satisfactory, which further demonstrates the practicability of Ra-Ni in environmental applications.
Collapse
Affiliation(s)
- Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Siyu Cheng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
5
|
Kajner G, Kéri A, Bélteki Á, Valkai S, Dér A, Geretovszky Z, Galbács G. Multifunctional microfluidic chips for the single particle inductively coupled plasma mass spectrometry analysis of inorganic nanoparticles. LAB ON A CHIP 2022; 22:2766-2776. [PMID: 35786729 DOI: 10.1039/d2lc00377e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed at exploiting the so far unexploited potential of carrying out on-line sample pretreatment steps on microfluidic chips for single particle inductively coupled plasma mass spectrometry (spICP-MS) measurements, and demonstrating their ability to practically facilitate most of the simpler tasks involved in the spICP-MS analysis of nanoparticles. For this purpose, polydimethylsiloxane microfluidic chips, capable of high-range dilution and sample injection were made by casting, using high-precision, 3D-printed molds. Optimization of their geometry and functions was done by running several hydrodynamic simulations and by gravimetric, fluorescence enhanced microscope imaging and solution-based ICP-MS experiments. On the optimized microfluidic chips, several experiments were done, demonstrating the benefits of the approach and these devices, such as the determination of nanoparticle concentration using only a few tens of microliters of sample, elimination of solute interferences by dilution, solution-based size calibration and characterisation of binary nanoparticles. Due to the unique design of the chips, they can be linked together to extend the dilution range of the system by more than a magnitude per chip. This feature was also demonstrated in applications requiring multiple-magnitude dilution rates, when two chips were sequentially coupled.
Collapse
Affiliation(s)
- Gyula Kajner
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Albert Kéri
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Ádám Bélteki
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| | - Sándor Valkai
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - András Dér
- Inst. of Biophys, Biol. Res. Cent, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - Zsolt Geretovszky
- Dept. of Opt, and Quant. Electr. Univ. of Szeged, Dóm sq. 9, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Dept. of Inorg, and Anal. Chem, Univ. of Szeged, Dóm sq. 7, H-6720 Szeged, Hungary.
| |
Collapse
|
6
|
Zheng D, Li W, Zhao B, Yang Z, Xia L. All-fiber surface-enhanced Raman scattering detection system combining an integrated microfluidic chip and micro-lensed fiber. APPLIED OPTICS 2022; 61:4761-4767. [PMID: 36255957 DOI: 10.1364/ao.457448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 06/16/2023]
Abstract
It is a challenge to perform simple and rapid detection of substances due to their complex structure. Biochemical molecules play a vital role in human health and environmental testing. Surface-enhanced Raman scattering (SERS) detection has the characteristics of strong specificity and real-time performance. At present, most SERS systems are expensive and not portable. Here, we demonstrate a SERS detection system with all-fiber connection, combined with a microfluidic chip and micro-lenses. Compared with the conventional SERS system that uses the spatial optical path, the devices in our system are connected by optical fibers, making the system more stable and operable. Besides, the microfluidic chips are introduced to further improve the system integration and stability. Owing to the micro-lensed fiber probe, the detected Raman signal intensity is increased by 2-3 times. We anticipate that the presented work will lead toward a rapid and portable SERS system and corresponding detection system. It also lays the foundation for real-time recognition in various complex environments in the design of a future optical fiber system.
Collapse
|
7
|
Resano M, Aramendía M, García-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci 2022; 13:4436-4473. [PMID: 35656130 PMCID: PMC9020182 DOI: 10.1039/d1sc05452j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
After 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (e.g., nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges. And this profound expansion of its application range becomes even more remarkable when considering that it has been made possible in an a priori simple way: by providing faster data acquisition and developing the corresponding theoretical substrate to relate the time-resolved signals thus obtained with the elemental composition of the target entities. This review presents the underlying concepts behind single event-ICP-MS, which are needed to fully understand its potential, highlighting key areas of application (e.g., single particle-ICP-MS or single cell-ICP-MS) as well as of future development (e.g., micro/nanoplastics).
Collapse
Affiliation(s)
- M Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - M Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
- Centro Universitario de la Defensa de Zaragoza Carretera de Huesca s/n 50090 Zaragoza Spain
| | - E García-Ruiz
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - A Bazo
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - E Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| | - F Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| |
Collapse
|