1
|
Sousa MP, Bettencourt P, Brás-Silva C, Pereira C. Biosensors for natriuretic peptides in cardiovascular diseases. A review. Curr Probl Cardiol 2024; 49:102180. [PMID: 37907188 DOI: 10.1016/j.cpcardiol.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with high rates of morbidity and mortality. Over the years, it has been crucial to find accurate biomarkers capable of doing a precise monitor of HF and provide an early diagnosis. Of these, it has been established an important role of natriuretic peptides in HF assessment. Moreover, the development of biosensors has been garnering interest as new diagnostic medical tools. In this review we first provide a general overview of HF, its pathogenesis, and diagnostic features. We then discuss the role of natriuretic peptides in heart failure by characterizing them and point out their potential as biomarkers. Finally, we adress the evolution of biosensors development and the available natriuretic peptides biosensors for disease monitoring.
Collapse
Affiliation(s)
- Mariana P Sousa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto 4200-135, Portugal
| | - Paulo Bettencourt
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Claudia Pereira
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, Porto 4249-004, Portugal; HE-FP-Hospital Fernando Pessoa, CECLIN, Center of Clinical Studies, 4420-096 Gondomar, Portugal; FCS-Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
2
|
Lai J, Ding L, Liu Y, Fan C, You F, Wei J, Qian J, Wang K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem 2023; 423:136285. [PMID: 37156141 DOI: 10.1016/j.foodchem.2023.136285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Detection of T-2 toxin is of great significance to environment and human health, as T-2 toxin is one of the main toxins that contaminate crops, stored grain and other food. Herein, a zero-gate-bias organic photoelectrochemical transistor (OPECT) sensor was proposed based on nanoelectrode arrays as gate photoactive materials which can result in the accumulation of photovoltage and preferable capacitance leading to better sensitivity of the OPECT. For comparison, the channel current of OPECT was 100 times higher than photocurrent of conventional photoelectrochemical (PEC) attributing to remarkable signal amplification of OPECT. It was also found that the detection limit of OPECT aptasensor was as low as 28.8 pg/L, lower than 0.34 ng/L of the conventional PEC method, further indicating the advantage of the OPECT devices in T-2 toxin determination. This research has been successfully applied in real sample detection which provided a general platform of OPECT for food safety analysis.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Kaya SI, Cetinkaya A, Ozcelikay G, Samanci SN, Ozkan SA. Approaches and Challenges for Biosensors for Acute and Chronic Heart Failure. BIOSENSORS 2023; 13:282. [PMID: 36832048 PMCID: PMC9954479 DOI: 10.3390/bios13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Heart failure (HF) is a cardiovascular disease defined by several symptoms that occur when the heart cannot supply the blood needed by the tissues. HF, which affects approximately 64 million people worldwide and whose incidence and prevalence are increasing, has an important place in terms of public health and healthcare costs. Therefore, developing and enhancing diagnostic and prognostic sensors is an urgent need. Using various biomarkers for this purpose is a significant breakthrough. It is possible to classify the biomarkers used in HF: associated with myocardial and vascular stretch (B-type natriuretic peptide (BNP), N-terminal proBNP and troponin), related to neurohormonal pathways (aldosterone and plasma renin activity), and associated with myocardial fibrosis and hypertrophy (soluble suppression of tumorigenicity 2 and galactin 3). There is an increasing demand for the design of fast, portable, and low-cost biosensing devices for the biomarkers related to HF. Biosensors play a significant role in early diagnosis as an alternative to time-consuming and expensive laboratory analysis. In this review, the most influential and novel biosensor applications for acute and chronic HF will be discussed in detail. These studies will be evaluated in terms of advantages, disadvantages, sensitivity, applicability, user-friendliness, etc.
Collapse
Affiliation(s)
- Sariye Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara 06018, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Analytical Chemistry, Graduate School of Health Sciences, Ankara University, Ankara 06110, Turkey
| | - Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Seyda Nur Samanci
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Department of Analytical Chemistry, Graduate School of Health Sciences, Ankara University, Ankara 06110, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
4
|
Shen L, Wang YW, Shan HY, Chen J, Wang AJ, Liu W, Yuan PX, Feng JJ. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochrome c. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4767-4774. [PMID: 36416105 DOI: 10.1039/d2ay01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cytochrome c (cyt c) plays a critical role in mitochondrial respiratory chain, whose absence is detrimental to electron transport and reduce adenosine triphosphate. For ultrasensitive detection of cyt c, sheet-like covalent organic frameworks (COFs) were prepared by orderly accumulation of 1,3,5-benzenetricarboxaldehyde (BTA) and p-phenylenediamine (PDA), and further grafted with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) - an electrochemiluminescence (ECL) emitter. Specifically, the morphology and structure of the COFs-ABEI were mainly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS). In parallel, the optical properties of the emitter were certified by UV-vis absorbance spectroscopy, Fourier infrared spectroscopy (FTIR), fluorescence (FL), and ECL measurements, showing 2.25-time enhanced ECL efficiency over pure ABEI, coupled by illustrating the interfacial electron transport mechanism. On the above foundation, a label-free "signal off" ECL biosensor was constructed by virtue of the specific immune recognition between the aptamer of the target cyt c with its capture DNA (cDNA) anchored on the biosensing platform, exhibiting a wider linear range of 1.00 fg mL-1-0.10 ng mL-1 (R2 = 0.998) and a lower limit of detection (LOD) down to 0.73 fg mL-1. This work offers some constructive guidelines for sensitive bioassays of disease-related biomarkers in the clinical field.
Collapse
Affiliation(s)
- Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Wen Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hong-Yan Shan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jun Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Zhao JG, Cao J, Wang WZ. Peptide-Based Electrochemical Biosensors and Their Applications in Disease Detection. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Komarova N, Panova O, Titov A, Kuznetsov A. Aptamers Targeting Cardiac Biomarkers as an Analytical Tool for the Diagnostics of Cardiovascular Diseases: A Review. Biomedicines 2022; 10:biomedicines10051085. [PMID: 35625822 PMCID: PMC9138532 DOI: 10.3390/biomedicines10051085] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of cardiac biomarkers is used for diagnostics, prognostics, and the risk assessment of cardiovascular diseases. The analysis of cardiac biomarkers is routinely performed with high-sensitivity immunological assays. Aptamers offer an attractive alternative to antibodies for analytical applications but, to date, are not widely practically implemented in diagnostics and medicinal research. This review summarizes the information on the most common cardiac biomarkers and the current state of aptamer research regarding these biomarkers. Aptamers as an analytical tool are well established for troponin I, troponin T, myoglobin, and C-reactive protein. For the rest of the considered cardiac biomarkers, the isolation of novel aptamers or more detailed characterization of the known aptamers are required. More attention should be addressed to the development of dual-aptamer sandwich detection assays and to the studies of aptamer sensing in alternative biological fluids. The universalization of aptamer-based biomarker detection platforms and the integration of aptamer-based sensing to clinical studies are demanded for the practical implementation of aptamers to routine diagnostics. Nevertheless, the wide usage of aptamers for the diagnostics of cardiovascular diseases is promising for the future, with respect to both point-of-care and laboratory testing.
Collapse
|
8
|
Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Mikrochim Acta 2022; 189:142. [PMID: 35279780 PMCID: PMC8917829 DOI: 10.1007/s00604-022-05186-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Determination of specific cardiac biomarkers (CBs) during the diagnosis and management of adverse cardiovascular events such as acute myocardial infarction (AMI) has become commonplace in emergency department (ED), cardiology and many other ward settings. Cardiac troponins (cTnT and cTnI) and natriuretic peptides (BNP and NT-pro-BNP) are the preferred biomarkers in clinical practice for the diagnostic workup of AMI, acute coronary syndrome (ACS) and other types of myocardial ischaemia and heart failure (HF), while the roles and possible clinical applications of several other potential biomarkers continue to be evaluated and are the subject of several comprehensive reviews. The requirement for rapid, repeated testing of a small number of CBs in ED and cardiology patients has led to the development of point-of-care (PoC) technology to circumvent the need for remote and lengthy testing procedures in the hospital pathology laboratories. Electroanalytical sensing platforms have the potential to meet these requirements. This review aims firstly to reflect on the potential benefits of rapid CB testing in critically ill patients, a very distinct cohort of patients with deranged baseline levels of CBs. We summarise their source and clinical relevance and are the first to report the required analytical ranges for such technology to be of value in this patient cohort. Secondly, we review the current electrochemical approaches, including its sub-variants such as photoelectrochemical and electrochemiluminescence, for the determination of important CBs highlighting the various strategies used, namely the use of micro- and nanomaterials, to maximise the sensitivities and selectivities of such approaches. Finally, we consider the challenges that must be overcome to allow for the commercialisation of this technology and transition into intensive care medicine.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nina C Dempsey
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Evelyn Sigley
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot, L35 5DR, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|