1
|
Wang YH, Lin XY, Cheng Y, Wang H, Liu W, Zhuge XK, Huo XL, Bao N. Vibration for enhancement of electrochemical analysis of biomolecules in a droplet on the rough surface of a disposable working electrode. Anal Chim Acta 2023; 1256:341158. [PMID: 37037634 DOI: 10.1016/j.aca.2023.341158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Although electrochemical detection of microliters-level solutions is attractive for analysis of low-amount biological samples, its performance could be weakened by limited mass transfer due to low Reynolds number and laminar flow. Herein we designed a 3D-printed electroanalytical device to apply vibration for improvement of mass transfer during electrochemical detection. In our approach, the droplet-size sample solution containing Indole-3-acetic acid (IAA, as a model) was directly applied on the effective surface of a disposable working electrode. We demonstrated that vibration could enhance electrochemical responses of IAA more on the rough surface than on the smooth surface of the working electrodes. After optimization, the sensitivity for electrochemical detection of a 20-μL droplet under vibration with the voltage of 7 V increased more than 100% compared with the static condition. The enhanced electrochemical responses brought by vibration could be achieved reproducibly, which could be ascribed to improved mass transfer. Our strategy could be practically applied for differentiation of IAA in different tissues of Marchantia polymorpha with enhanced responses. This study suggested that vibration might become a simple and effective method to improve mass transfer in analysis of microliter-volume solutions, which might be extended for more biochemical assays.
Collapse
Affiliation(s)
- Ya-Hong Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Xiang-Yun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Ye Cheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| | - Xiang-Kai Zhuge
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| |
Collapse
|
2
|
Yang W, Deng Z, Wang Y, Ma L, Zhou K, Liu L, Wei Q. Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye Orange G. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|