1
|
Liu GJ, Zhang JD, Zhou W, Feng GL, Xing GW. Recent advances in sugar-based AIE luminogens and their applications in sensing and imaging. Chem Commun (Camb) 2024; 60:11899-11915. [PMID: 39323243 DOI: 10.1039/d4cc03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most fluorogens with aggregation-induced emission (AIE) characteristics are hydrophobic and most common sugars are hydrophilic and naturally nontoxic. The combination of AIEgens and sugars can construct glycosyl AIEgens with the advantages of good water-solubility, low fluorescent background and satisfactory biocompatibility. Based on the specific reaction or binding with analytes to change the conjugate system or restrict intramolecular motions, glycosyl AIEgens can be used as powerful tools for detecting bioactive molecules or imaging living cells. In this feature article, we summarize recent advances in sugar-based AIE luminogens and their applications in biosensing and imaging. The sugar units could significantly increase the solubility, biocompatibility, target activity, and chemical modifying capacity and often decrease the background fluorescence of the AIE probes. Corresponding studies not only expand the application fields of AIEgens but also provide effective tools for broad carbohydrate research.
Collapse
Affiliation(s)
- Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Jing-Dong Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Luo W, Diao Q, Lv L, Li T, Ma P, Song D. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124411. [PMID: 38728851 DOI: 10.1016/j.saa.2024.124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-βgal, which exhibits a unique off-on response mechanism to β-galactosidase (β-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-βgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-βgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-βgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.
Collapse
Affiliation(s)
- Weiwei Luo
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| | - Linlin Lv
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Tiechun Li
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
3
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
4
|
García-Fleitas J, García-Fernández A, Martí-Centelles V, Sancenón F, Bernardos A, Martínez-Máñez R. Chemical Strategies for the Detection and Elimination of Senescent Cells. Acc Chem Res 2024; 57:1238-1253. [PMID: 38604701 PMCID: PMC11079973 DOI: 10.1021/acs.accounts.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence can be defined as an irreversible stopping of cell proliferation that arises in response to various stress signals. Cellular senescence is involved in diverse physiological and pathological processes in different tissues, exerting effects on processes as differentiated as embryogenesis, tissue repair and remodeling, cancer, aging, and tissue fibrosis. In addition, the development of some pathologies, aging, cancer, and other age-related diseases has been related to senescent cell accumulation. Due to the complexity of the senescence phenotype, targeting senescent cells is not trivial, is challenging, and is especially relevant for in vivo detection in age-related diseases and tissue samples. Despite the elimination of senescent cells (senolysis) using specific drugs (senolytics) that have been shown to be effective in numerous preclinical disease models, the clinical translation is still limited due to the off-target effects of current senolytics and associated toxicities. Therefore, the development of new chemical strategies aimed at detecting and eliminating senescent cells for the prevention and selective treatment of senescence-associated diseases is of great interest. Such strategies not only will contribute to a deeper understanding of this rapidly evolving field but also will delineate and inspire new possibilities for future research.In this Account, we report our recent research in the development of new chemical approaches for the detection and elimination of senescent cells based on new probes, nanoparticles, and prodrugs. The designed systems take advantage of the over-representation in senescent cells of certain biomarkers such as β-galactosidase and lipofuscin. One- and two-photon probes, for higher tissue penetration, have been developed. Moreover, we also present a renal clearable fluorogenic probe for the in vivo detection of the β-galactosidase activity, allowing for correlation with the senescent burden in living animals. Moreover, as an alternative to molecular-based probes, we also developed nanoparticles for senescence detection. Besides, we describe advances in new therapeutic agents to selectively eradicate senescent cells using β-galactosidase activity-sensitive gated nanoparticles loaded with cytotoxic or senolytic agents or new prodrugs aiming to increase the selectivity and reduction of off-target toxicities of current drugs. Moreover, new advances therapies have been applied in vitro and in vivo. Studies with the probes, nanoparticles, and prodrugs have been applied in several in vitro and in vivo models of cancer, fibrosis, aging, and drug-induced cardiotoxicity in which senescence plays an important role. We discuss the benefits of these chemical strategies toward the development of more specific and sophisticated probes, nanoparticles, and prodrugs targeting senescent cells.
Collapse
Affiliation(s)
- Jessie García-Fleitas
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
| | - Alba García-Fernández
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat
Politècnica de València, Instituto
de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Andrea Bernardos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat
Politècnica de València, Instituto
de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| |
Collapse
|
5
|
Cen P, Cui C, Huang J, Chen H, Wu F, Niu J, Zhong Y, Jin C, Zhu WH, Zhang H, Tian M. Cellular senescence imaging and senolysis monitoring in cancer therapy based on a β-galactosidase-activated aggregation-induced emission luminogen. Acta Biomater 2024; 179:340-353. [PMID: 38556136 DOI: 10.1016/j.actbio.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Cellular senescence is a permanent state of cell cycle arrest characterized by increased activity of senescence associated β-galactosidase (SA-β-gal). Notably, cancer cells have been also observed to exhibit the senescence response and are being considered for sequential treatment with pro-senescence therapy followed by senolytic therapy. However, there is currently no effective agent targeting β-galactosidase (β-Gal) for imaging cellular senescence and monitoring senolysis in cancer therapy. Aggregation-induced emission luminogen (AIEgen) demonstrates strong fluorescence, good photostability, and biocompatibility, making it a potential candidate for imaging cellular senescence and monitoring senolysis in cancer therapy when endowed with β-Gal-responsive capabilities. In this study, we introduced a β-Gal-activated AIEgen named QM-β-gal for cellular senescence imaging and senolysis monitoring in cancer therapy. QM-β-gal exhibited good amphiphilic properties and formed aggregates that emitted a fluorescence signal upon β-Gal activation. It showed high specificity towards the activity of β-Gal in lysosomes and successfully visualized DOX-induced senescent cancer cells with intense fluorescence both in vitro and in vivo. Encouragingly, QM-β-gal could image senescent cancer cells in vivo for over 14 days with excellent biocompatibility. Moreover, it allowed for the monitoring of senescent cancer cell clearance during senolytic therapy with ABT263. This investigation indicated the potential of the β-Gal-activated AIEgen, QM-β-gal, as an in vivo approach for imaging cellular senescence and monitoring senolysis in cancer therapy via highly specific and long-term fluorescence imaging. STATEMENT OF SIGNIFICANCE: This work reported a β-galactosidase-activated AIEgen called QM-β-gal, which effectively imaged DOX-induced senescent cancer cells both in vitro and in vivo. QM-β-gal specifically targeted the increased expression and activity of β-galactosidase in senescent cancer cells, localized within lysosomes. It was cleared rapidly before activation but maintained stability after activation in the DOX-induced senescent tumor. The AIEgen exhibited a remarkable long-term imaging capability for senescent cancer cells, lasting over 14 days and enabled monitoring of senescent cancer cell clearance through ABT263-induced apoptosis. This approach held promise for researchers seeking to achieve prolonged imaging of senescent cells in vivo.
Collapse
Affiliation(s)
- Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Hetian Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China; Human Phenome Institute, Fudan University, Shanghai 201203, China.
| |
Collapse
|
6
|
Li L, Jia F, Li Y, Peng Y. Design strategies and biological applications of β-galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Adv 2024; 14:3010-3023. [PMID: 38239445 PMCID: PMC10795002 DOI: 10.1039/d3ra07968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Beta-galactosidase (β-galactosidase), a lysosomal hydrolytic enzyme, plays a critical role in the catalytic hydrolysis of glycosidic bonds, leading to the conversion of lactose into galactose. This hydrolytic enzyme is used as a biomarker in various applications, including enzyme-linked immunosorbent assays (ELISAs), gene expression studies, tuberculosis classification, and in situ hybridization. β-Galactosidase abnormalities are linked to various diseases, such as ganglioside deposition, primary ovarian cancer, and cell senescence. Thus, effective detection of β-galactosidase activity may aid disease diagnoses and treatment. Activatable optical probes with high sensitivity, specificity, and spatiotemporal resolution imaging capabilities have become powerful tools for visualization and real time tracking in vivo in the past decade. This manuscript reviews the sensing mechanism, molecular design strategies, and advances of fluorescence probes in the biological application of β-galactosidase, particularly in the field of ovarian cancer research. Current challenges in tracking β-galactosidase and future directions are also discussed.
Collapse
Affiliation(s)
- Liangliang Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Feifei Jia
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yunxiu Li
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| | - Yan Peng
- Shenzhen Longhua District Central Hospital Guangzhou 518000 People's Republic of China
| |
Collapse
|
7
|
Chen S, Ma X, Wang H, Wang L, Wu Y, Wang Y, Li Y, Fan W, Niu C, Hou S. Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift. Anal Chim Acta 2023; 1272:341482. [PMID: 37355329 DOI: 10.1016/j.aca.2023.341482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/26/2023]
Abstract
β-galactosidase (β-Gal) is an important biomarker of cell senescence and primary ovarian cancer. Therefore, it is of great significance to construct a near-infrared fluorescent probe with deep tissue penetration and a high signal-to-noise ratio for visualization of β-galactosidase in biological systems. However, most near-infrared probes tend to have small Stokes shifts and low signal-to-noise ratios due to crosstalk between excitation and emission spectra. Using d-galactose residues as specific recognition units and near-infrared dye TJ730 as fluorophores, a near-infrared fluorescence probe SN-CR with asymmetric structure was developed for the detection of β-Gal. The probe has a fast reaction equilibrium time (<12 min) with β-Gal, excellent biocompatibility, near-infrared emission (738 nm), low detection limit (0.0029 U/mL), and no crosstalk between the excitation spectrum and emission spectrum (Stokes shifts 142 nm) of the probe. Cell imaging studies have shown that SN-CR can visually trace β-Gal in different cells and distinguish ovarian cancer cells from other cells.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Haijie Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Caoyuan Niu
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
8
|
He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. BIOSENSORS 2023; 13:838. [PMID: 37754071 PMCID: PMC10526510 DOI: 10.3390/bios13090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Specific identification and monitoring of senescent cells are essential for the in-depth understanding and regulation of senescence-related life processes and diseases. Fluorescent sensors providing real-time and in situ information with spatiotemporal resolution are unparalleled tools and have contributed greatly to this field. This review focuses on the recent progress in fluorescent sensors for molecularly targeted imaging and real-time tracking of cellular senescence. The molecular design, sensing mechanisms, and biological activities of the sensors are discussed. The sensors are categorized by the types of markers and targeting ligands. Accordingly, their molecular recognition and fluorescent performance towards senescence biomarkers are summarized. Finally, the perspective and challenges in this field are discussed, which are expected to assist future design of next-generation sensors for monitoring cellular senescence.
Collapse
Affiliation(s)
- Zhirong He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
| | - Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
10
|
Fang Y, Wang Q, Xiang C, Liu G, Li J. A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline-Malononitrile. BIOSENSORS 2023; 13:610. [PMID: 37366974 DOI: 10.3390/bios13060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
β-amyloid is an important pathological feature of Alzheimer's disease. Its abnormal production and aggregation in the patient's brain is an important basis for the early diagnosis and confirmation of Alzheimer's disease. In this study, a novel aggregation-induced emission fluorescent probe, PTPA-QM, was designed and synthesized based on pyridinyltriphenylamine and quinoline-malononitrile. These molecules exhibit a donor-donor-π-acceptor structure with a distorted intramolecular charge transfer feature. PTPA-QM displayed the advantages of good selectivity toward viscosity. The fluorescence intensity of PTPA-QM in 99% glycerol solution was 22-fold higher than that in pure DMSO. PTPA-QM has been confirmed to have excellent membrane permeability and low toxicity. More importantly, PTPA-QM exhibits a high affinity towards β-amyloid in brain sections of 5XFAD mice and classical inflammatory cognitive impairment mice. In conclusion, our work provides a promising tool for the detection of β-amyloid.
Collapse
Affiliation(s)
- Yan Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qi Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Chenlong Xiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guijin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Junjian Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Jiang D, Tan Q, Shen Y, Ye M, Li J, Zhou Y. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122411. [PMID: 36731306 DOI: 10.1016/j.saa.2023.122411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
β-galactosidase (β-gal) is a diagnostic biomarker of primary ovarian cancers. The development of effective fluorescent probes for investigating the activity of β-gal will be beneficial to cancer diagnosis. Herein, a near-infrared (NIR) excited ratiometric nanoprobe (DCM-β-gal-UCNPs) by assembling pyranonitrile dye (DCM-β-gal) on the surface of upconversion nanophosphors (UCNPs) was designed for the evaluation of β-gal activity in vivo. Upon the interaction with β-gal, a marked decrease of upconversion luminescence (UCL) signal in the green channel was observed owing to the luminescence resonance energy transfer from the UCNPs to pyranonitrile chromophore, whereas the NIR UCL emission at 800 nm was almost no influence. Thus, the β-gal activity could be quantitatively detected by the UCL intensity ratio of UCL543 nm/UCL800 nm with the limit of detection of 3.1 × 10-4 U/mL. Moreover, DCM-β-gal-UCNPs was effectively applied for monitoring β-gal fluctuation in living cells and zebrafish by a ratiometric UCL signal excited by 980 nm laser. We envision that nanoprobe DCM-β-gal-UCNPs might be used as a potential bioimaging tool to disclose more biological information of β-gal in β-gal-associated diseases in the future.
Collapse
Affiliation(s)
- Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuhan Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingyun Li
- Department of Plastic&Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, PR China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
12
|
Duo Y, Luo G, Zhang W, Wang R, Xiao GG, Li Z, Li X, Chen M, Yoon J, Tang BZ. Noncancerous disease-targeting AIEgens. Chem Soc Rev 2023; 52:1024-1067. [PMID: 36602333 DOI: 10.1039/d2cs00610c] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Noncancerous diseases include a wide plethora of medical conditions beyond cancer and are a major cause of mortality around the world. Despite progresses in clinical research, many puzzles about these diseases remain unanswered, and new therapies are continuously being sought. The evolution of bio-nanomedicine has enabled huge advancements in biosensing, diagnosis, bioimaging, and therapeutics. The recent development of aggregation-induced emission luminogens (AIEgens) has provided an impetus to the field of molecular bionanomaterials. Following aggregation, AIEgens show strong emission, overcoming the problems associated with the aggregation-caused quenching (ACQ) effect. They also have other unique properties, including low background interferences, high signal-to-noise ratios, photostability, and excellent biocompatibility, along with activatable aggregation-enhanced theranostic effects, which help them achieve excellent therapeutic effects as an one-for-all multimodal theranostic platform. This review provides a comprehensive overview of the overall progresses in AIEgen-based nanoplatforms for the detection, diagnosis, bioimaging, and bioimaging-guided treatment of noncancerous diseases. In addition, it details future perspectives and the potential clinical applications of these AIEgens in noncancerous diseases are also proposed. This review hopes to motivate further interest in this topic and promote ideation for the further exploration of more advanced AIEgens in a broad range of biomedical and clinical applications in patients with noncancerous diseases.
Collapse
Affiliation(s)
- Yanhong Duo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Guanghong Luo
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Wentao Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Renzhi Wang
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmacology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Meili Chen
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
13
|
Zhang S, Wang T, Wang X, Liao W, Wang X, Yuan Y, Chen G, Jia X. A novel aggregation-induced emission fluorescent probe with large Stokes shift for sensitive detection of pH changes in live cells. LUMINESCENCE 2022; 37:2139-2144. [PMID: 36367244 DOI: 10.1002/bio.4407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The detection of intracellular pH is crucial for elucidating the pathological process of cancers, as well as for medical diagnostic applications. Here, we developed an aggregation-induced emission active pH-responsive fluorescent probe (TPE-DCP) for sensitively detecting cell pH changes. The probe shows obvious pH-sensing properties at ~615 nm, with a pKa value of 6.82 and a good linear pH response ranging from 8.5 to 4.5. TPE-DCP holds advantages such as excellent anti-interference performance, good photostability, and low cytotoxicity, and has been successfully used to image intracellular pH changes in cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
15
|
Guo J, Lu W, Meng Y, Liu Y, Dong C, Shuang S. The highly sensitive “turn-on” detection of morin using fluorescent nitrogen-doped carbon dots. Analyst 2022; 147:5455-5461. [DOI: 10.1039/d2an01646j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Graphic diagram of the synthesis of the N-CDs and the N-CDs based fluorescent sensor for the determination of morin.
Collapse
Affiliation(s)
- Jianhua Guo
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yating Meng
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|