1
|
He Y, Peng Y, Tong Y. One-Tube Nested PCR Coupled with CRISPR-Cas12a for Ultrasensitive Nucleic Acid Testing. ACS OMEGA 2024; 9:39616-39625. [PMID: 39346871 PMCID: PMC11425923 DOI: 10.1021/acsomega.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
Nucleic acid testing with high sensitivity and specificity is of great importance for accurate disease diagnostics. Here, we developed an in situ one-tube nucleic acid testing assay. In this assay, the target nucleic acid is captured using magnetic silica beads, avoiding an elution step, followed directly by the polymerase chain reaction (PCR) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a detection. This assay achieved visual readout and a sensitivity of 120 copies/mL for detecting SARS-CoV-2. More importantly, the assay demonstrated over 95% sensitivity and 100% specificity compared to the gold standard real-time quantitative PCR (RT-qPCR) test by using 75 SARS-CoV-2 clinical samples. By integrating nested PCR and Cas12a, this all-in-one nucleic acid testing approach enables ultrasensitive, highly specific, and cost-effective diagnosis at community clinics and township hospitals.
Collapse
Affiliation(s)
- Yugan He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research & Development Department, Shenzhen New Industries Biomedical Engineering Co.,Ltd, Shenzhen 518054, PR China
| | - Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
2
|
Peng Y, Hu R, Xue S, He Y, Tian L, Pang Z, He Y, Dong Y, Shi Y, Wang S, Hong B, Liu K, Wang R, Song L, Fan H, Li M, Tong Y. Rapid and highly sensitive colorimetric LAMP assay and integrated device for visual detection of monkeypox virus. Anal Chim Acta 2024; 1311:342720. [PMID: 38816155 DOI: 10.1016/j.aca.2024.342720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The monkeypox virus (MPXV) is a linear double-stranded DNA virus with a large genome that causes tens of thousands of infections and hundreds of deaths in at least 40 countries and regions worldwide. Therefore, timely and accurate diagnostic testing could be an important measure to prevent the ongoing spread of MPXV and widespread epidemics. RESULTS Here, we designed multiple sets of primers for the target region of MPXV for loop-mediated isothermal amplification (LAMP) detection and identified the optimal primer set. Then, the specificity in fluorescent LAMP detection was verified using the plasmids containing the target gene, pseudovirus and other DNA/RNA viruses. We also evaluated the sensitivity of the colorimetric LAMP detection system using the plasmid and pseudovirus samples, respectively. Besides, we used monkeypox pseudovirus to simulate real samples for detection. Subsequent to the establishment and introduction of a magnetic beads (MBs)-based nucleic acid extraction technique, an integrated device was developed, characterized by rapidity, high sensitivity, and remarkable specificity. This portable system demonstrated a visual detection limit of 137 copies/mL, achieving sample-to-answer detection within 1 h. SIGNIFICANCE The device has the advantages of integration, simplicity, miniaturization, and visualization, which help promote the realization of accurate, rapid, portable, and low-cost testing. Meanwhile, this platform could facilitate efficient, cost-effective and easy-operable point-of-care testing (POCT) in diverse resource-limited settings in addition to the laboratory.
Collapse
Affiliation(s)
- Yadan Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Xue
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yugan He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuqi Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yinghan Shi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Adastra PA, Durand NC, Mitra N, Pulido SG, Mahajan R, Blackburn A, Colaric ZL, Theisen JWM, Weisz D, Dudchenko O, Gnirke A, Rao SSP, Kaur P, Aiden EL, Aiden AP. A rapid, low-cost, and highly sensitive SARS-CoV-2 diagnostic based on whole-genome sequencing. PLoS One 2023; 18:e0294283. [PMID: 38032990 PMCID: PMC10688730 DOI: 10.1371/journal.pone.0294283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Early detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing and de novo genome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control's 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach.
Collapse
Affiliation(s)
- Per A. Adastra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Neva C. Durand
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Namita Mitra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Saul Godinez Pulido
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Ragini Mahajan
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Alyssa Blackburn
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Zane L. Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Joshua W. M. Theisen
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - David Weisz
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Andreas Gnirke
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Suhas S. P. Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, Texas, United States of America
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
4
|
Feng X, Zhuang X, Lui G, Hsing IM. Efficient large-scale screening of viral pathogens by fragment length identification of pooled nucleic acid samples (FLIPNAS). Analyst 2023; 148:1743-1751. [PMID: 36939281 DOI: 10.1039/d3an00058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The necessity for the large-scale screening of viral pathogens has been amply demonstrated during the COVID-19 pandemic. During this time, SARS-CoV-2 nucleic acid pooled testing, such as Dorfman-based group testing, was widely adopted in response to the sudden increased demand for detection. However, the current approach still necessitates the individual retesting of positive pools. Here, we established an efficient method termed the fragment-length identification of pooled nucleic acid samples (FLIPNAS), where all subsamples (n = 8) can be uniquely labelled and tested in a single-time detection among pools of samples. We used a novel and simple design of unique primers (UPs) to generate amplicons of unique lengths after reverse transcription and polymerase chain reaction to reach this aim. As a result, the unique lengths of the amplicons can be recognized and traced back to the corresponding UPs and specific samples. Our results demonstrated that FLIPNAS could recognize one to eight positive subsamples in a single test without retesting positive pools. The system also showed sufficient sensitivity for the mass monitoring of SARS-CoV-2 and no cross-reactivity against three common respiratory diseases. Moreover, the FLIPNAS results of 40 samples with a positive ratio of 7.8% were in 100% agreement with their individual detection results using the gold standard. Collectively, this study shows that the efficiency of nucleic acid pooling detection can be further improved by FLIPNAS, which can speed up testing and mitigate the urgent demand for resources.
Collapse
Affiliation(s)
- Xianzhen Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Xinyu Zhuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Grace Lui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|