1
|
Guo R, Lv R, Yu T, Wang X, Shi R, Umar M, Hayat M, Mandal G, Liu J. Effective Identification and Highly Sensitive Quantification of Fructo-oligosaccharide Isomers with Bi 2Se 3 Nanosheet-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24082-24092. [PMID: 39405035 DOI: 10.1021/acs.jafc.4c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The growing interest in fructo-oligosaccharides (FOSs) necessitates the effective monitoring of product quality. Identifying and quantifying FOS isomers from the same sources are challenging. Here, we report a new method using Bi2Se3 nanosheets as the matrix for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), achieving effective differentiation of oligosaccharide isomers through MALDI-MS/MS. Notably, four isomers of pentasaccharides and two isomers of heptasaccharides were successfully identified, with a remarkably low limit of detection of 0.06 pmol. Our approach enabled the specific quantification of 1F-fructofuranosylnystose in commercial FOS products, positioning it as a promising tool for oligosaccharide isomer quantification in nutritional food products. Furthermore, this technique facilitates the rapid and sensitive detection of various saccharides and a wide range of other small molecules with enhanced signal intensities and improved reproducibility. Overall, it facilitates the rapid, selective, and sensitive detection of various saccharides and other small molecules, enhancing analytical chemistry and food science applications.
Collapse
Affiliation(s)
- Ruochen Guo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Tianrong Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuze Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Muhammad Umar
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Govinda Mandal
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Bao Z, Yu D, Fu J, Gu J, Xu J, Qin L, Hu H, Yang C, Liu W, Chen L, Wu R, Liu H, Xu H, Guo H, Wang L, Zhou Y, Li Q, Wang X. 2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites. Anal Chem 2024; 96:5160-5169. [PMID: 38470972 DOI: 10.1021/acs.analchem.3c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, μm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.
Collapse
Affiliation(s)
- Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Dian Yu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jia Xu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjuan Liu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| |
Collapse
|
4
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|