1
|
Supradit K, Prasopdee S, Phanaksri T, Tangphatsornruang S, Pholhelm M, Yusuk S, Butthongkomvong K, Wongprasert K, Kulsantiwong J, Chukan A, Tesana S, Thitapakorn V. Differential circulating miRNA profiles identified miR-423-5p, miR-93-5p, and miR-4532 as potential biomarkers for cholangiocarcinoma diagnosis. PeerJ 2024; 12:e18367. [PMID: 39677943 PMCID: PMC11639864 DOI: 10.7717/peerj.18367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/30/2024] [Indexed: 12/17/2024] Open
Abstract
Background Cholangiocarcinoma (CCA) is high in morbidity and mortality rates which may be due to asymptomatic and effective diagnostic methods not available. Therefore, an effective diagnosis is urgently needed. Methods Investigation of plasma circulating miRNA (cir-miRNA) was divided into two phases, including the discovery phase (pooled 10 samples each from three pools in each group) and the validation phase (17, 16, and 35 subjects of healthy control (HC), O. viverrini (OV), and CCA groups, respectively). The plasma from healthy control subjects, O. viverrini infected subjects, and CCA subjects was used. In the discovery phase, plasma was pooled by adding an equal volume of plasma, and cir-miRNA was isolated and analyzed with the nCounter® SPRINT Profiler. The significantly different cir-miRNAs were selected for the validation phase. In the validation phase, cir-miRNA was isolated and analyzed using real time-quantitative polymerase chain reaction (RT-qPCR). Subsequently, statistical analysis was conducted, and diagnostic parameters were calculated. Results Differential plasma cir-miRNA profile showed at least three candidates including miR-423-5p, miR-93-5p, and miR-4532 as potential biomarkers. From validation of these cir-miRNAs by RT-qPCR, the result showed that the satisfied sensitivity and specificity to differential CCA group from HC and OV group was obtained from miR-4532 (P < 0.05) while miR-423-5p and miR-93-5p can be used for differential CCA from OV and HC group (P < 0.05) with high specificity but limited the sensitivity. In conclusion, candidate cir-miRNAs have been identified as potential biomarkers including miR-423-5p, miR-93-5p and miR-4532. Screening by miR-4532 and confirmed with miR-423-5p, miR-93-5p were suggested for differential CCA patients in the endemic area of O. viverrini.
Collapse
Affiliation(s)
- Kittiya Supradit
- Radiological technology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sattrachai Prasopdee
- Chulabhorn International College of Medicine (CICM), Thammasat University, Pathum Thani, Thailand
- Research Group in Multidimensional Health and Disease (MHD), Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected parasitic Diseases (TRU-OCN), Thammasat University, Pathum Thani, Thailand
| | - Teva Phanaksri
- Chulabhorn International College of Medicine (CICM), Thammasat University, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Montinee Pholhelm
- Chulabhorn International College of Medicine (CICM), Thammasat University, Pathum Thani, Thailand
- Research Group in Multidimensional Health and Disease (MHD), Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected parasitic Diseases (TRU-OCN), Thammasat University, Pathum Thani, Thailand
| | - Siraphatsorn Yusuk
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected parasitic Diseases (TRU-OCN), Thammasat University, Pathum Thani, Thailand
| | | | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | - Smarn Tesana
- Research Group in Multidimensional Health and Disease (MHD), Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Veerachai Thitapakorn
- Chulabhorn International College of Medicine (CICM), Thammasat University, Pathum Thani, Thailand
- Research Group in Multidimensional Health and Disease (MHD), Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat Research Unit in Opisthorchiasis, Cholangiocarcinoma, and Neglected parasitic Diseases (TRU-OCN), Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
2
|
Huang L, Zhou Y, Xu L, Ruan X, Huang Z, Ke Y, Lin L, Tang Q. Accurate and sensitive dual-response fluorescence detection of microRNAs based on an upconversion nanoamplicon with red emission. RSC Adv 2024; 14:32911-32921. [PMID: 39429926 PMCID: PMC11487471 DOI: 10.1039/d4ra05061d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. In recent years, researchers have found a close relationship between microRNAs (miRNAs) and OSCC. In addition, miRNAs are highly stable in tissues and circulation, and are also considered potential biomarkers for cancer detection and prognosis. Among a variety of tools for miRNAs with low abundance, single red-emitting UCNP-based biosensors have attracted special interest due to their unique properties, including deep organizational penetration, weak radiation damage, and low autofluorescence. Additionally, the measurement of low-abundance analytes via enzyme-free signal amplification is also an effective means. Herein, by taking advantage of red-emitting UCNPs and an enzyme-toehold-mediated strand displacement cascade, a dual-signal amplification biosensor was constructed. The recycled miRNA can be regarded as a catalyst for the assembly of multiple H1/H2 duplexes, which promoted the response signal of augmented analyte expression. Moreover, the proposed biosensors improved the measurement accuracy via a dual-signal response to obviously avert false-positive signals. The proposed method was applied to measure miRNA-222 (a model analyte) in serum samples, and the results were similar to those of polymerase chain reaction (PCR), with spiked recoveries ranging from 91.2% to 101.7%. The proposed assay has the merits of high sensitivity, strong recognition, and low background, indicating broad potential for the measurement of diverse analytes in biological samples.
Collapse
Affiliation(s)
- Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Yi Zhou
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Liang Xu
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Xin Ruan
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Zhao Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
| | - Yue Ke
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| | - Lisong Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University Fuzhou 350001 China
- Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University Fuzhou 350001 China
| | - Qiuling Tang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China
| |
Collapse
|
3
|
Son H. Harnessing CRISPR/Cas Systems for DNA and RNA Detection: Principles, Techniques, and Challenges. BIOSENSORS 2024; 14:460. [PMID: 39451674 PMCID: PMC11506544 DOI: 10.3390/bios14100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The emergence of CRISPR/Cas systems has revolutionized the field of molecular diagnostics with their high specificity and sensitivity. This review provides a comprehensive overview of the principles and recent advancements in harnessing CRISPR/Cas systems for detecting DNA and RNA. Beginning with an exploration of the molecular mechanisms of key Cas proteins underpinning CRISPR/Cas systems, the review navigates the detection of both pathogenic and non-pathogenic nucleic acids, emphasizing the pivotal role of CRISPR in identifying diverse genetic materials. The discussion extends to the integration of CRISPR/Cas systems with various signal-readout techniques, including fluorescence, electrochemical, and colorimetric, as well as imaging and biosensing methods, highlighting their advantages and limitations in practical applications. Furthermore, a critical analysis of challenges in the field, such as target amplification, multiplexing, and quantitative detection, underscores areas requiring further refinement. Finally, the review concludes with insights into the future directions of CRISPR-based nucleic acid detection, emphasizing the potential of these systems to continue driving innovation in diagnostics, with broad implications for research, clinical practice, and biotechnology.
Collapse
Affiliation(s)
- Heyjin Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Peng J, Liu T, Guan L, Xu Z, Xiong T, Zhang Y, Song J, Liu X, Yang Y, Hao X. A highly sensitive Lock-Cas12a biosensor for detection and imaging of miRNA-21 in breast cancer cells. Talanta 2024; 273:125938. [PMID: 38503125 DOI: 10.1016/j.talanta.2024.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The expression levels of microRNA (miRNA) vary significantly in correlation with the occurrence and progression of cancer, making them valuable biomarkers for cancer diagnosis. However, their quantitative detection faces challenges due to the high sequence homology, low abundance and small size. In this work, we established a strand displacement amplification (SDA) approach based on miRNA-triggered structural "Lock" nucleic acid ("Lock" DNA), coupled with the CRISPR/Cas12a system, for detecting miRNA-21 in breast cancer cells. The "Lock" DNA freed the CRISPR-derived RNA (crRNA) from the dependence on the target sequence and greatly facilitated the extended detection of different miRNAs. Moreover, the CRISPR/Cas12a system provided excellent amplification ability and specificity. The designed biosensor achieved high sensitivity detection of miRNA-21 with a limit of detection (LOD) of 28.8 aM. In particular, the biosensor could distinguish breast cancer cells from other cancer cells through intracellular imaging. With its straightforward sequence design and ease of use, the Lock-Cas12a biosensor offers significant advantages for cell imaging and early clinical diagnosis.
Collapse
Affiliation(s)
- Jiawei Peng
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Liu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Liwen Guan
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ziyue Xu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Ting Xiong
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yu Zhang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Jiaxin Song
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xuexia Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330088, PR China; School of Forensic Medicine, Wannan Medical College, Wuhu Anhui, 241002, PR China.
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
5
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Zeng D, Jiao J, Mo T. Combination of nucleic acid amplification and CRISPR/Cas technology in pathogen detection. Front Microbiol 2024; 15:1355234. [PMID: 38380103 PMCID: PMC10877009 DOI: 10.3389/fmicb.2024.1355234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Major health events caused by pathogenic microorganisms are increasing, seriously jeopardizing human lives. Currently PCR and ITA are widely used for rapid testing in food, medicine, industry and agriculture. However, due to the non-specificity of the amplification process, researchers have proposed the combination of nucleic acid amplification technology with the novel technology CRISPR for detection, which improves the specificity and credibility of results. This paper summarizes the research progress of nucleic acid amplification technology in conjunction with CRISPR/Cas technology for the detection of pathogens, which provides a reference and theoretical basis for the subsequent application of nucleic acid amplification technology in the field of pathogen detection.
Collapse
Affiliation(s)
| | | | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Zhou X, Tang W, Zhang Y, Deng A, Guo Y, Qian L. Liposome-exosome hybrids for in situ detection of exosomal miR-1246 in breast cancer. Analyst 2024; 149:403-409. [PMID: 38058177 DOI: 10.1039/d3an01600e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Several lines of evidence suggest that exosomal miRNAs are potential biomarkers for cancer monitoring. An urgent need remains for the in situ detection of exosomal miRNAs at low concentrations without destroying the exosome structure. In the present study, a novel sensitive exosomal miR-1246 in situ detection strategy has been developed by integrating the CRISPR/Cas13a system with the formation of hybrids between exosomes and cationic liposomes. The liposomes were loaded with CRISPR/Cas13a, CRISPR RNA (crRNA), and RNA reporter probes. In the presence of exosomes, the liposome-exosome hybrids were formed through electrostatic interactions, and CRISPR/Cas13a was activated to cleave the reporter probes by exosomal miR-1246. The acquired fluorescence signal showed a linear response to the logarithm of MCF-7 exosome concentrations, indicating a quantitative response to exosomal miR-1246. The regression equation is y = 5021 log C - 9976 (R2 = 0.9985) with a limit of detection of 3 × 102 particles per mL. This strategy could not only be used to detect serum exosomal miR-1246 in breast cancer patients but also to distinguish early form advanced disease. This strategy can be exploited in future exosomal miRNA analyses.
Collapse
Affiliation(s)
- Xuting Zhou
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
- Department of Oncology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, China
| | - Wenting Tang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| | - Yan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Aidong Deng
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| | - Yuehua Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| | - Li Qian
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226000, China.
| |
Collapse
|
8
|
Hu R, Liu Y, Wang G, Lv J, Yang J, Xiao H, Liu Y, Zhang B. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip. Anal Chim Acta 2023; 1280:341870. [PMID: 37858557 DOI: 10.1016/j.aca.2023.341870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.
Collapse
Affiliation(s)
- Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Su J, Zheng W, Pan Y. Proximity ligation initiated DNAzyme-powered catalytic hairpin assembly for sensitive and accurate microRNA analysis. Anal Biochem 2023; 680:115299. [PMID: 37633354 DOI: 10.1016/j.ab.2023.115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
MicroRNAs (miRNAs) play a significant role in regulating diverse physiological processes, and are regarded as novel diagnostic biomarkers. However, the sensitive and reliable miRNA detection remains a huge challenge. Herein, we propose a proximity ligated initiated magnesium ion (Mg2+)-dependent DNAzyme-powered signal cascade for sensitive, accurate and reliable detection of miRNAs. Three signal amplification processes are involved in this approach, including the target miRNA recycle, DNAzyme powered substrate cleavage, and catalytic hairpin reaction (CHA). Based on this, the approach shows a low limit of detection of 523 aM and a wide detection range of 7 orders of magnitudes, which is comparable or superior to most of the former miRNA detection methods. In addition, the approach also possesses a high selectivity to target miRNA, suggesting a potential promising future of the approach for rapid detection of miRNAs in the application of developing novel tools for skin cancer diagnosis, and recovery evaluation.
Collapse
Affiliation(s)
- Jiaguang Su
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Yanbin Pan
- Department of Dermatology, The Second Nanning People's Hospital, Nanning, The Guangxi Zhuang Autonomous Region, 530031, China.
| |
Collapse
|
10
|
Zhu Y, Zhang M, Guo S, Xu H, Jie Z, Tao SC. CRISPR-based diagnostics of different biomolecules from nucleic acids, proteins, and small molecules to exosomes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1539-1550. [PMID: 37528660 PMCID: PMC10577475 DOI: 10.3724/abbs.2023134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
CRISPR-based detection technologies have been widely explored for molecular diagnostics. However, the challenge lies in converting the signal of different biomolecules, such as nucleic acids, proteins, small molecules, exosomes, and ions, into a CRISPR-based nucleic acid detection signal. Understanding the detection of different biomolecules using CRISPR technology can aid in the development of practical and promising detection approaches. Unfortunately, existing reviews rarely provide an overview of CRISPR-based molecular diagnostics from the perspective of different biomolecules. Herein, we first introduce the principles and characteristics of various CRISPR nucleases for molecular diagnostics. Then, we focus on summarizing and evaluating the latest advancements in CRISPR-based detection of different biomolecules. Through a comparison of different methods of amplification and signal readout, we discuss how general detection methods can be integrated with CRISPR. Finally, we conclude by identifying opportunities for the improvement of CRISPR in quantitative, amplification-free, multiplex, all-in-one, and point-of-care testing (POCT) purposes.
Collapse
Affiliation(s)
- Yuanshou Zhu
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Meng Zhang
- Department of Pulmonary and Critical Care MedicineShanghai Fifth People’s HospitalFudan UniversityShanghai200240China
| | - Shujuan Guo
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Hong Xu
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care MedicineShanghai Fifth People’s HospitalFudan UniversityShanghai200240China
- Center of Community-Based Health ResearchFudan UniversityShanghai200240China
| | - Sheng-ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
11
|
Du Y, Qi Y, Kang Q, Yang X, Xiang H. A fluorescent sensor based on strand displacement amplification and primer exchange reaction coupling for label-free detection of miRNA. Anal Chim Acta 2023; 1279:341780. [PMID: 37827678 DOI: 10.1016/j.aca.2023.341780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
MicroRNAs (miRNAs) are closely associated with human disease occurrence, including cancers, diabetes, inflammation, heart diseases, and viral infections, and their rapid and accurate detection is vital for the diagnosis and treatment of these diseases. Based on one-step reaction of strand displacement amplification (SDA) and primer exchange reaction (PER), a label-free and highly sensitive miRNA-21 detection strategy was developed. In this strategy, the target miRNA-21 binds directly to the hairpin template, triggering the SDA reaction and generating a large number of single strand DNAs as primers for PER amplification. With the help of polymerase, plenty of G-quadruplex fragments of different lengths were accumulated, and the organic dye thioflavin T selectively binds to these G-quadruplex fragments to produce a strong fluorescent signal. There is a wide detection range in this method, miRNA-21 can be detected in the range of 10 fM - 1 nM, the detection limit is low (1.25 fM). This method has good specificity and can effectively distinguish single-base mismatches of miRNA. In addition, the versatility of the method was validated by changing the target recognition site of SDA template.
Collapse
Affiliation(s)
- Yumin Du
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yinxiao Qi
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qi Kang
- Department of Nuclear Medicine, Huaihe Hospital, Henan University, PR China
| | - Xiaoyan Yang
- Qilu Hospital of Shandong University Dezhou Hospital, Shandong, PR China
| | - Hua Xiang
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
12
|
Wang X, Jin W, Yang Y, Ma H, Liu H, Lei J, Wu Y, Zhang L. CRISPR/Cas12a-mediated Enzymatic recombinase amplification for rapid visual quantitative authentication of halal food. Anal Chim Acta 2023; 1255:341144. [PMID: 37032058 DOI: 10.1016/j.aca.2023.341144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Economically motivated adulteration (EMA) has become a concern in food safety. We propose a CRISPR/Cas12a Mediated Enzymatic Recombinase Amplification detection system (CAMERA) that integrates Enzymatic Recombinase Amplification (ERA) and Cas12a cleavage to detect halal food adulteration. We designed and screened crRNA targeting CLEC, a porcine-specific nuclear single-copy gene, and optimized the reagent concentrations and incubation times for the ERA and Cas12a cleavage steps. CAMERA was highly specific for pork ingredients detection. The DNA concentration and fluorescence signal intensity relationship was linear at DNA concentrations of 20-0.032 ng/μL. CAMERA detected as few as two CLEC copies and quantified samples with porcine DNA content as low as 5% within 25 min. The system could be operated in a miniaturized working mode that requires no technical expertise or professional equipment, making CAMERA a valuable tool in resource-limited areas for the qualitative and quantitative detection of pork ingredients in halal food.
Collapse
Affiliation(s)
- Xiaohui Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyu Jin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yao Yang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huizi Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Honghong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiawen Lei
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yuhua Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
13
|
Li H, Zhang Z, Gan L, Fan D, Sun X, Qian Z, Liu X, Huang Y. Signal Amplification-Based Biosensors and Application in RNA Tumor Markers. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094237. [PMID: 37177441 PMCID: PMC10180857 DOI: 10.3390/s23094237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Tumor markers are important substances for assessing cancer development. In recent years, RNA tumor markers have attracted significant attention, and studies have shown that their abnormal expression of post-transcriptional regulatory genes is associated with tumor progression. Therefore, RNA tumor markers are considered as potential targets in clinical diagnosis and prognosis. Many studies show that biosensors have good application prospects in the field of medical diagnosis. The application of biosensors in RNA tumor markers is developing rapidly. These sensors have the advantages of high sensitivity, excellent selectivity, and convenience. However, the detection abundance of RNA tumor markers is low. In order to improve the detection sensitivity, researchers have developed a variety of signal amplification strategies to enhance the detection signal. In this review, after a brief introduction of the sensing principles and designs of different biosensing platforms, we will summarize the latest research progress of electrochemical, photoelectrochemical, and fluorescent biosensors based on signal amplification strategies for detecting RNA tumor markers. This review provides a high sensitivity and good selectivity sensing platform for early-stage cancer research. It provides a new idea for the development of accurate, sensitive, and convenient biological analysis in the future, which can be used for the early diagnosis and monitoring of cancer and contribute to the reduction in the mortality rate.
Collapse
Affiliation(s)
- Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Ma X, Suo T, Zhao F, Shang Z, Chen Y, Wang P, Li B. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II). Anal Bioanal Chem 2023; 415:2281-2289. [PMID: 36952025 DOI: 10.1007/s00216-023-04650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cadmium ion (Cd(II)) is a pernicious environmental pollutant that has been shown to contaminate agricultural lands, accumulate through the food chain, and seriously threaten human health. At present, Cd(II) monitoring is dependent on centralized instruments, necessitating the development of rapid and on-site detection platforms. Against this backdrop, the present study reports on the development of a fluorometric aptasensor designed to target Cd(II), which is achieved through the integration of strand displacement amplification (SDA) and CRISPR/Cas12a. In the absence of Cd(II), the aptamer initiates SDA, resulting in the generation of a profusion of ssDNA that activates Cas12a, leading to a substantial increase in fluorescence output. Conversely, the presence of Cd(II) curtails the SDA efficiency, culminating in a significant reduction in fluorescence output. The proposed approach has been demonstrated to enable the selective detection of Cd(II) at concentrations of 60 pM, with the performance of the aptasensor validated in real water and rice samples. The proposed platform based on aptamer-target interaction holds immense promise as a signal-amplified and precise method for the detection of Cd(II) and has the potential to transform current hazard detection practices in food samples.
Collapse
Affiliation(s)
- Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing, 100101, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Nanjing Jiangbei New Area Biopharmaceutical Public Platform Co., Ltd., Nanjing, 211899, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhaoyang Shang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
15
|
Zhang Q, Zhang X, Zou X, Ma F, Zhang CY. CRISPR/Cas-Based MicroRNA Biosensors. Chemistry 2023; 29:e202203412. [PMID: 36477884 DOI: 10.1002/chem.202203412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
As important post-transcriptional regulators, microRNAs (miRNAs) play irreplaceable roles in diverse cellular functions. Dysregulated miRNA expression is implicated in various diseases including cancers, and thus miRNAs have become the valuable biomarkers for disease monitoring. Recently, clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has shown great promise for the development of next-generation biosensors because of its precise localization capability, good fidelity, and high cleavage activity. Herein, we review recent advance in development of CRISPR/Cas-based biosensors for miRNA detection. We summarize the principles, features, and performance of these miRNA biosensors, and further highlight the remaining challenges and future directions.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Institution, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
16
|
Shen K, Hua W, Ge S, Mao Y, Gu Y, Chen G, Wang Y. A dual-amplification strategy-intergated SERS biosensor for ultrasensitive hepatocellular carcinoma-related telomerase activity detection. Front Bioeng Biotechnol 2023; 10:1124441. [PMID: 36714617 PMCID: PMC9881591 DOI: 10.3389/fbioe.2022.1124441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase has been considered as a biomarker for early diagnosis and prognosis assessment of hepatocellular carcinoma (HCC), while the highly sensitive and specific methods remain challenging. To detect telomerase, a novel surface-enhanced Raman scattering (SERS) biosensor was constructed using the dual DNA-catalyzed amplification strategy composed of strand displacement amplification (SDA) and catalytic hairpin assembly (CHA). This strategy relies on the extension reaction of telomerase primer induced by telomerase, forming long-stranded DNAs with repetitive sequence to catalyze the follow-up SDA event. Subsequently, the SDA products can trigger the CHA reaction between the SERS probes (Au-Ag nanocages (Au-AgNCs) modified with hairpin DNA1 and Raman reporters) and capture substrate (Au@SiO2 array labeled with hairpin DNA2), resulting in the formation of numerous "hot spots" to significantly enhance the SERS signal. Results are promising that the established biosensor presented excellent reproducibility, specificity and sensitivity. Moreover, ELISA was applied as the golden standard to verify the application of the proposed biosensor in real samples and the results confirmed the satisfactory accuracy of our method. Therefore, the proposed SERS biosensor has the potential to be an ideal tool for the early screening of HCC.
Collapse
Affiliation(s)
- Kang Shen
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Weiwei Hua
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China,Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Gaoyang Chen
- Department of Oncology, Taizhou Second People's Hospital, Taizhou, China,*Correspondence: Gaoyang Chen, ; Youwei Wang,
| | - Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China,*Correspondence: Gaoyang Chen, ; Youwei Wang,
| |
Collapse
|
17
|
Antropov DN, Stepanov GA. Molecular Mechanisms Underlying CRISPR/Cas-Based Assays for Nucleic Acid Detection. Curr Issues Mol Biol 2023; 45:649-662. [PMID: 36661529 PMCID: PMC9857636 DOI: 10.3390/cimb45010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Applied to investigate specific sequences, nucleic acid detection assays can help identify novel bacterial and viral infections. Most up-to-date systems combine isothermal amplification with Cas-mediated detection. They surpass standard PCR methods in detection time and sensitivity, which is crucial for rapid diagnostics. The first part of this review covers the variety of isothermal amplification methods and describes their reaction mechanisms. Isothermal amplification enables fast multiplication of a target nucleic acid sequence without expensive laboratory equipment. However, researchers aim for more reliable results, which cannot be achieved solely by amplification because it is also a source of non-specific products. This motivated the development of Cas-based assays that use Cas9, Cas12, or Cas13 proteins to detect nucleic acids and their fragments in biological specimens with high specificity. Isothermal amplification yields a high enough concentration of target nucleic acids for the specific signal to be detected via Cas protein activity. The second part of the review discusses combinations of different Cas-mediated reactions and isothermal amplification methods and presents signal detection techniques adopted in each assay. Understanding the features of Cas-based assays could inform the choice of an optimal protocol to detect different nucleic acids.
Collapse
|
18
|
Cai Q, Wang F, Ge J, Xu Z, Li M, Xu H, Wang H. G-wire-based self-quenched fluorescence probe combining with target-activated isothermal cascade amplification for ultrasensitive microRNA detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121605. [PMID: 35843057 DOI: 10.1016/j.saa.2022.121605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we reported the G-wire-based self-quenched fluorescence probe and its application in ultrasensitive microRNA (miRNA) detection by combining with target-activated isothermal cascade amplification. The terminal-single-fluorescein (FAM)-labeled G-rich oligonucletides self-assembled into G-wire nanostructures (G-wires) with K+ and Mg2+. Thereafter, the G-wires brought terminal-labeled FAM into close proximity, as a result, the self-quenched signal probe formed. Besides, when there was the target miRNA, target-activated isothermal cascade amplification converted miRNA into the copious trigger DNA. After hybridization between trigger DNA and the self-quenched probe, the G-wires were splited and forced the apart of proximate FAM, and then the self-quenched probe displayed an "on" mechanism. Therefore, the approach gave a limit of detection (LOM) of 0.82 aM to miRNA-21 and could be implemented within a wide linear range of 2 aM to 2 nM. This approach was able to distinguish the single-mismatched miRNA-21, which was selective and sensitive in detecting human spiked serum samples.
Collapse
Affiliation(s)
- Qingyou Cai
- School of Teacher Education, Huzhou University, Huzhou, Zhejiang 313000, PR China
| | - Fanfan Wang
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Jingying Ge
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Zhiguo Xu
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China
| | - Mei Li
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China; Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China.
| | - Hui Xu
- School of Science and Engineering, Huzhou College, Huzhou, Zhejiang 313000, PR China; Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, PR China
| |
Collapse
|
19
|
Long P, Jiang Z, He Z, Chen Z. Development of a loop-mediated isothermal amplification assay for the rapid detection of Russula subnigricans and Russula japonica. Front Microbiol 2022; 13:918651. [PMID: 36081806 PMCID: PMC9445624 DOI: 10.3389/fmicb.2022.918651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Russula subnigricans is the only deadly species in the genus Russula with a mortality rate of more than 50%, and Russula japonica is the most common poisonous species, making rapid species identification in mushroom poisoning incidents extremely important. The main objective of this study was to develop a rapid, specific, sensitive, and simple loop-mediated isothermal amplification (LAMP) assay for the detection of R. subnigricans and R. japonica. Two sets of species-specific LAMP primers targeting internal transcribed spacer (ITS) regions were designed to identify R. subnigricans and R. japonica. The results demonstrated that while LAMP could specifically detect R. subnigricans and R. japonica, the polymerase chain reaction (PCR) could not distinguish R. subnigricans from Russula nigricans. In addition, the results demonstrated that, compared to electrophoresis-LAMP and real-time quantitative LAMP (RT-qLAMP), the detection sensitivity of HNB-LAMP (a mixture of LAMP with hydroxy naphthol blue (HNB) dye) for R. subnigricans could reach 0.5 pg/μl and was 100-fold higher than that of PCR. The LAMP reaction could be completed in 45 min, which is much faster than the conventional PCR. In the future, LAMP can be used a quick, specific, and sensitive detection tool in various fields.
Collapse
|
20
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|