1
|
Yan XH, Ji B, Fang F, Guo XL, Zhao S, Wu ZY. Fast and sensitive smartphone colorimetric detection of whole blood samples on a paper-based analytical device. Talanta 2024; 270:125515. [PMID: 38101035 DOI: 10.1016/j.talanta.2023.125515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Methods based on paper-based analytical devices (PAD) and smartphone photographic colorimetric detection have become representative instrument-independent point-of-care testing (POCT) platforms due to their low cost and simplicity. However, the detection of target components from whole blood sample still presents challenges in terms of field preparation of small amounts of blood sample and detection sensitivity. This paper presents a rapid online processing method for whole blood samples on PAD based on plasma separation membrane (PSM), and combined with electrokinetic stacking and selective chromatic reaction. Real-time smartphone-based colorimetric detection of free hemoglobin (FHb) and human serum albumin (HSA) was successfully demonstrated. RESULTS With the proposed method, both detections for low and high concentration analytes could be implemented. The limits of detection of 16.6 mg L-1 for FHb and 0.67 g L-1 for HSA were obtained, respectively, with RSD below 8 %. The reliability of the method was verified by the recovery test and desktop spectrophotometric method. The detection results for real blood samples were in agreement with that by clinical methods. SIGNIFICANCE AND NOVELTY The PAD method is inexpensive, simple and fast, and detection of a whole blood sample of 5 μL can be finished in 5 min. This work shows that POCT of biomarkers from whole blood with PAD is possible without using any desktop facilities.
Collapse
Affiliation(s)
- Xiang-Hong Yan
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Bin Ji
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Fang Fang
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiao-Lin Guo
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Zhao
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Zhi-Yong Wu
- Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
2
|
Al-Tamimi M, El-sallaq M, Altarawneh S, Qaqish A, Ayoub M. Development of Novel Paper-Based Assay for Direct Serum Separation. ACS OMEGA 2023; 8:20370-20378. [PMID: 37332822 PMCID: PMC10268636 DOI: 10.1021/acsomega.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Background: Many conventional laboratory tests require serum separation using a clot activator/gel tube, followed by centrifugation in an equipped laboratory. The aim of this study is development of novel, equipment-free, paper-based assay for direct and efficient serum separation. Methods: Fresh blood was directly applied to wax-channeled filter paper treated with clotting activator/s and then observed for serum separation. The purity, efficiency, recovery, reproducibility, and applicability of the assay were validated after optimization. Results: Serum was successfully separated using activated partial thromboplastin time (APTT) reagent and calcium chloride-treated wax-channeled filter paper within 2 min. The assay was optimized using different coagulation activators, paper types, blood collection methods, and incubation conditions. Confirmation of serum separation from cellular components was achieved by direct visualization of the yellow serum band, microscopic imaging of the pure serum band, and absence of blood cells in recovered serum samples. Successful clotting was evaluated by the absence of clotting of recovered serum by prolonged prothrombin time and APTT, absence of fibrin degradation products, and absence of Staphylococcus aureus-induced coagulation. Absence of hemolysis was confirmed by undetectable hemoglobin from recovered serum bands. The applicability of serum separated in paper was tested directly by positive color change on paper using bicinchoninic acid protein reagent, on recovered serum samples treated with Biuret and Bradford reagents in tubes, or measurement of thyroid-stimulating hormone and urea compared to standard serum samples. Serum was separated using the paper-based assay from 40 voluntary donors and from the same donor for 15 days to confirm reproducibility. Dryness of coagulants in paper prevents serum separation that can be re-stored by a re-wetting step. Conclusions: Paper-based serum separation allows for development of sample-to-answer paper-based point-of-care tests or simple and direct blood sampling for routine diagnostic tests.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mariam El-sallaq
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Shahed Altarawneh
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Arwa Qaqish
- Department
of Biology and Biotechnology, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mai Ayoub
- Department
of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
3
|
Hemmateenejad B, Rafatmah E, Shojaeifard Z. Microfluidic paper and thread-based separations: Chromatography and electrophoresis. J Chromatogr A 2023; 1704:464117. [PMID: 37300912 DOI: 10.1016/j.chroma.2023.464117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.
Collapse
|
4
|
Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. MICROMACHINES 2022; 13:1835. [PMID: 36363856 PMCID: PMC9696303 DOI: 10.3390/mi13111835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Conventional detectors are mostly made up of complicated structures that are hard to use. A paper-based microfluidic chip, however, combines the advantages of being small, efficient, easy to process, and environmentally friendly. The paper-based microfluidic chips for biomedical applications focus on efficiency, accuracy, integration, and innovation. Therefore, continuous progress is observed in the transition from single-channel detection to multi-channel detection and in the shift from qualitative detection to quantitative detection. These developments improved the efficiency and accuracy of single-cell substance detection. Paper-based microfluidic chips can provide insight into a variety of fields, including biomedicine and other related fields. This review looks at how paper-based microfluidic chips are prepared, analyzed, and used to help with both biomedical development and functional integration, ideally at the same time.
Collapse
Affiliation(s)
- Yuhang Jin
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| | - Aziz ur Rehman Aziz
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Ying Lv
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Hangyu Zhang
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|