1
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A Massively Parallel In Vivo Assay of TdT Mutants Yields Variants with Altered Nucleotide Insertion Biases. ACS Synth Biol 2024; 13:3326-3343. [PMID: 39302688 DOI: 10.1021/acssynbio.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double-strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell HistorY Recording by Ordered InsertioN (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro, revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work and the multiplex assay it features should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
Affiliation(s)
- Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
| | - Theresa B Loveless
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick I Kelly
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 82587, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 82587, United States
| | - Jeremy H Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 82587, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 82587, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A massively parallel in vivo assay of TdT mutants yields variants with altered nucleotide insertion biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598561. [PMID: 38915690 PMCID: PMC11195295 DOI: 10.1101/2024.06.11.598561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA with random nucleotides. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants in high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell History Recording by Ordered Insertion (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro , revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work, and the multiplex assay it features, should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
|
3
|
Esmaelpourfarkhani M, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Signal-off nanozyme-based colorimetric aptasensor for sensitive detection of ampicillin using MnO 2 nanoflowers and gold nanoparticles. Anal Biochem 2024; 687:115459. [PMID: 38182031 DOI: 10.1016/j.ab.2024.115459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO2 nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO2 nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.
Collapse
Affiliation(s)
- Masoomeh Esmaelpourfarkhani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Yang X, Yuan L, Xu Y, He B. Target-catalyzed self-assembled spherical G-quadruplex/hemin DNAzymes for highly sensitive colorimetric detection of microRNA in serum. Anal Chim Acta 2023; 1247:340879. [PMID: 36781247 DOI: 10.1016/j.aca.2023.340879] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions. As a horseradish peroxidase-mimic, GQ/hemin DNAzyme could catalyze the redox reaction and color change of the substrates. Taking miRNA-21 as an example, the developed method exhibited satisfactory specificity as well as high sensitivity with a detection limit of 90.3 fM. Furthermore, the sensing platform has been successfully employed to detect miRNA-21 in spiked serum, providing a promising tool for early diagnosis of cancers.
Collapse
Affiliation(s)
- Xuejiao Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
7
|
Bu Y, Wang K, Yang X, Nie G. Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Anal Chim Acta 2022; 1233:340496. [DOI: 10.1016/j.aca.2022.340496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
8
|
Kuang J, Fu Z, Sun X, Lin C, Yang S, Xu J, Zhang M, Zhang H, Ning F, Hu P. A colorimetric aptasensor based on a hemin/EpCAM aptamer DNAzyme for sensitive exosome detection. Analyst 2022; 147:5054-5061. [DOI: 10.1039/d2an01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exosomes are considered as potential biomarkers that can reflect information from their parent cell-associated cancer microenvironment.
Collapse
Affiliation(s)
- Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuezhi Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chuhui Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shenglong Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayao Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fanghong Ning
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|